

Tratamentos de Superfícies

3ª edição

Organizado, atualizado e revisado por **Roberto Motta de Sillos**

Manual Técnico SurTec - Tratamentos de Superfícies - 3ª edição é uma publicação da

SurTec do Brasil Ltda.

Rua Pedro Zolcsak, 121

09790-410 - São Bernardo do Campo SP

Telefones (11) 4334-7330 / 7331 - Vendas

(11) 4334-7316 - Central Técnica

Fax (11) 4334-7322 website www.surtec.com.br e-mail surtec@br.surtec.com

É proibida a reprodução total ou parcial deste conteúdo, sem a expressa autorização da SurTec do Brasil Ltda.

Dados Internacionais de Catalogação na Publicação (CIP) (Cãmara Brasileira do Livro, SP, Brasil)

Manual Técnico SurTec : tratamentos de superfícies / organizado, atualizado e revisado por Roberto Motta de Sillos. -- 3ª ed. -- São Bernardo do Campo, SP : SurTec do Brasil, 2009.

Bibliografia.

1. Superfícies (Tecnologia) I. Sillos, Roberto Motta de. II. Título: Tratamentos de superfícies.

03-1969 CDD-671.7

Índices para catálogo sistemático:

1. Superfícies: Tratamentos: Tecnologia 671.7

À Memória de

Sueli Maria da Silva Kida, 1957 – 2008 Cláudio Biancardi Neto, 1949 – 2008

Amigos de sempre e profissionais dedicados.

Introdução

O período que vivemos pede desafios

As mudanças e incertezas sócio- econômicas e financeiras que o mundo dos negócios nos impõe remete-nos à uma situação onde precisamos colocar os nossos planos, modos e estilo de vida em perspectiva.

A crise de confiança continua propagando um ambiente negativo. Cabe indagar, à luz dos fundamentos econômicos, se já chegamos ao ponto de exagerar as expectativas pessimistas.

Perguntamo-nos: Será que desta vez vamos suportar? E a resposta vem logo: já passamos por situações piores no passado e claro, vamos superar mais esta! A palavra de ordem é repensar e encontrar um caminho alternativo que demanda o momento.

Como o transparente fiel da balança no cenário mundial, estamos sendo testados e desta vez apesar de todos os fatos, não podemos perder o bonde desta história.

Felizmente o Brasil mantém uma situação diferenciada em relação aos países desenvolvidos, que pode permití-lo gerir a crise sem entrar em recessão.

As perspectivas são de perdas e de aumento do desemprego. Entretanto, é fundamental para a nossa atividade prever com antecedência os desdobramentos e a reversão dessas expectativas.

A qualificação e a criatividade de nosso povo é o patrimônio maior da nação que ora desponta frente a tantos percalços internos e externos.

Repensemos os conceitos, esperemos sempre o melhor, planejemos para o que estar por vir, quer seja bom ou ruim, este é nosso objetivo maior: sigamos adiante lembrando sempre que "O futuro não é o que costumava ser..."

A equipe técnica da SurTec do Brasil, mais uma vez, procurando dar o melhor de sí para os colegas profissionais do mercado, lança o Manual Técnico em sua terceira edição, ampliada, revisada e mais atual que nunca.

É nosso desejo que esta ferramenta seja utilizada em sua plenitude, como um auxiliar no cálculo de novas instalações, na escolha da melhor tecnologia, seja ela qual for, na resolução de problemas e acima de tudo como instrumento educacional.

Colaboradores

Com empenho e dedicação, os seguintes colaboradores contribuíram sobremaneira na elaboração deste manual:

Alcir José Bertozzo

Anuar Gazal

Camila Boin

Carlos Chaves

Cassia Maria Rodrigues dos Santos

Célia Regina Tomachuk

Cláudio Barbosa Pierri

Cláudio Biancardi Neto

Daniella Gimenes

Domingos José Carlos Spinelli

Edson Petrechen de Castro

Elvis Neves Mendes

Fernando Gonçalves Carminholi

Geovani Paulo Bazani

Gisele Masini Nascimento

Hanns Langer

Hércules Gilberto

Jaides Pinheiro de Jesus

João Quintino Neto

Joice de Araújo Victal

Luiz Gervásio Ferreira dos Santos

Marcelo Nascimento

Marco Antonio Caracciolo

Paula Valente Pechi

Rafael Rodrigues Abib

Raul Fernando Bopp

Rogério Sewaibricker

Solange Calixto Badaró

Suely Maria da Silva Kida

Vandré Alexandre Paschoal

Wanderley De Cicco Filho

Índice

SurTec - Missão Empresarial	11
Perfil da Empresa	13
Política da Qualidade	14
Ciclo PDCA	15
SurTec Internacional	16
A SurTec no Brasil	17
Dados e cálculos para eletrodeposição,	
baseado na eficiência catódica de 100%	20
Fórmulas para Cálculos	
Espessura de camada	21
Rendimento de corrente	
Densidade de corrente	21
Peso do depósito	21
Fórmulas para dimensionamento	
determinação do comprimento do tanque eletrolítico	
determinação da largura de um tanque eletrolítico	
dimensionamento dos tanques de simples imersão	
número de gancheiras e distribuição das peças	
dimensionamento da capacidade do retificador	
determinação da espessura dos barramentos	
determinação do tamanho de um tambor rotativo	
cálculo do volume interno do tambor: $V_{_{\mathrm{T}}}$ (sextavado)	
condição que deve ser atendida num tambor	23
volume ocupado pelas peças em um tambor	24
intensidade de corrente necessária num tambor	
cálculo de potência necessária numa estufa	
fórmulas adicionais para banhos de lavagem	24
fórmula simplificada que só têm valor para banhos	
com 2 ou mais cascatas	
fórmula para serpentinas de refrigeração	
fórmula para refrigeração de emergência	
Equivalência de unidades de medida	
Conversão de unidades de medida	
Definições de unidades SI	31
Unidades de medida	
unidades de base - sistema internacional (SI)	
unidades derivadas - sistema internacional (SI)	
unidades "NÃO SI"	
Cálculo de superfície e volume dos sólidos	35

Calculo de superficie de fixadores	
Tabela de Conversão (peso específico / graus Baumé)	40
Tabela de conversão de °Bé/g/l de ácido crômico	41
Conteúdo metálico de sais utilizados na eletrodeposição	42
Concentração de matéria-prima	44
Cianeto de sódio necessário para dissolver sais metálicos	
Eficiência catódica em % de diversos processos	
Velocidade de deposição em minutos de diversos processos	
Conversão de espessura da camada de micrometros (μ m) para g/m²	
Conversões fáceis e aproximadas das unidades de espessura	•
de camadas e revestimentos	51
Conversão de medidas de polegadas em milímetros	
Escala de conversão de temperatura Celsius (°C) em Fahrenheit (°F)	
Cálculo de aquecimento de banhos eletrolíticos	54
Tabela para cálculo da capacidade de cargas em	
banho de Zinco Alcalino	55
Tabelas para o cálculo das superfícies de cargas	
para eletrodeposição	56
Tabela de área e peso de parafusos	
Peso para arames	64
Tabela de ferros redondos e quadrados	65
Tabela Técnicas	
tabela de máxima corrente para banhos	
tabela de volume mínimo de banho à tambor	66
tabela de coeficientes de dilatação térmica de alguns	
metais em camadas finas e de alguns substratos (em $10^6/^{\circ}$ C)	66
tabela de peso superficial (g/m²), espessura média (micrometros)	
e densidade aparente de camadas de fosfato de zinco	67
tabela de dureza de metais eletrodepositados (em HV)	68
tabela de volume de H ₂ SO ₄ necessário para reduzir	
o pH a cada 0,2 pontos (em cc/100 litros)	68
tabela de retenção em micrometros do material de filtração	69
tabela de qualidade mínima de pureza de	
água (em microsiemens/cm) para diversos banhos	69
tabela de calorias necessárias para evaporação de água	69
tabela de dimensões de tambores rotativos	
Tabela de amperagem para barramentos quadrados e retangulares	
Tabela de amperagem para barramentos redondos	
Tabela de aplicações e observações sobre depósitos eletrolíticos	72
Tabela de unidades de vácuo	
Equivalencia de unidades de dureza	
Escala de durezas	
Tabela de resistência química de materiais	
Tratamento de efluentes:	/ 3
Limite de emissões Lei Estadual 997/76, Decreto 8468	01
Solubilidade dos metais em água	
Tabela de cálculo para economia de água nos tanques de lavagem	
iadeia de concentração máxima em danhos de lavagem	٥J

Coleta e preservação de amostras de água para análise laboratorial	84
Instrução Técnica: testes qualitativos em efluentes industriais	
determinação de cianetos (<lmg l)<="" td=""><td> 85</td></lmg>	85
determinação de cromo hexavalente	86
Instrução técnica: determinação de sulfatos - cálculo estequiométrico	
determinação de sulfatos	87
cálculo estequiométrico para correção de sulfatos	
em efluentes galvânicos	87
Instrução técnica: Determinação da dureza da água	88
Instrução técnica: Presença de Cromo VI em filme de cromato	89
Instrução técnica: Controle de aspecto em cromatizante azul trivalente	91
Instrução técnica: Ajuste de pH de solução cromatizante azul trivalente	92
Instrução técnica: Instalação da agitação a ar	93
Instrução técnica: Instruções para uso da Célula de Hull	
Instrução técnica: Instruções para uso da Célula de Joggle Rohco	
Instrução técnica: Teste high-low	
Verificação da passivação em banho de níquel	118
Guia de problemas: causas e soluções	
Banhos de cobre cianídrico • Cobrelux, SurTec 866-B	120
Banhos de cobre ácido • SurTec 686 B	
Banhos de níquel brilhante • SurTec 855 Br, SurTec 856,	
SurTec 858, SurTec 858 Fast	
Banhos de cromo • SurTec 872, SurTec 874, SurTec 875	134
Banhos de zinco alcalino • SurTec 704	139
Banhos de zinco ácido base KCI • SurTec 752 B,	
SurTec 757 B, SurTec 758 B	142
Banhos de zinco alcalino com sianeto • SurTec 722 B,	
SurTec 724 B, SurTec 725 B	144
Seqüências para aplicação de	
cromo decorativo sobre ferro	146
cromo decorativo sobre ferro, latão e cobre	
cromo decorativo sobre zamac e latão	148
cromo decorativo sobre ABS	
cromo decorativo sobre alumínio	150
zinco em processo alcalino isento de cianetos	
com passivações trivalentes	152
liga zinco-ferro com passivações trivalentes	154
liga zinco-níquel com passivações trivalentes	155
cromo duro sobre aço	156
estanho sobre ferro e latão	157
Métodos de análises de banhos galvânicos	158
Soluções Padrão	177
Reagentes e indicadores	
MPT - Processos de pré-tratamentos	
Teoria dos fosfatos	188
Lay-outs de aspersão	
Fluxo para tratamento de efluentes de linhas de fosfatização	

Sistemas de oxidação de Fe ²⁺ para Fe ³⁺	
em fosfatizantes acelerados por Fe ²⁺	204
Seqüência para aplicação de	
fostato de ferro por imersão para pintura	205
fostato de ferro por aspersão para pintura	205
fostato de zinco por imersão para	
deformação a frio (trefila de tubos)	206
fosfato de zinco por imersão para	
estampagem profunda (extrusão)	206
fosfato de zinco por aspersão para pintura a pó ou KTL	207
fosfato de zinco por imersão a frio para pintura a pó ou KTL	207
fosfato de manganês por imersão	
Seqüência para Fosfocromatização de alumínio	208
Seqüência para passivação Trivalente do Alumínio	
SurTec 650 ChromitAL TCP	
Problemas e soluções para linha de fostato	211
Tabelas de ligas de alumínio	213
Segurança: produtos químicos incompatíveis para fins de armazenagem	215
Segurança: NR 26 - Sinalização de segurança (126-000-6)	216
Resolução 420/2004 - ANTT	222
Decreto 96044/98 - PP7 - Regulamento para transporte rodoviário	
de produto perigoso	225
Instruções VDA	
Glossário: alguns termos usados na galvanoplastia	241
Bibliografia	247

Missão empresarial

A SurTec do Brasil, através de sua Diretoria, define como sua Missão Empresarial, o desenvolvimento, produção e comercialização de produtos, processos e serviços voltados para os clientes que atuam no mercado de tratamento e acabamento superficial, agregando valor, e conceito tecnológico de não agressão ao meio ambiente a estes produtos e serviços.

Domingos J. C. Spinelli Diretor Técnico Industrial Luiz G.F. dos Santos Diretor Comercial Administrativo

proteção

- Desengraxantes industriais para todos os tipos de substratos e aplicações, formulados a partir de matérias-primas menos ofensivas possíveis, biodegradáveis e controláveis.
- Processo de Zinco Alcalino isento de Cianeto com excelente distribuição de camada, de conceito completo que consiste de anodos realmente inertes, gerador catalítico de zinco e ZincOperator (controle automático de processo)
- Sistema de limpeza reciclável e modular com os componentes Builder e Tensoativo com taxas de recuperação extraordinariamente altas

- Chromitierung a nova passivação para zinco e ligas de zinco, livre de substâncias tóxicas e cancerígenas. Com alta resistência à corrosão, mesmo após tratamento térmico.
- Para a indústria siderúrgica, desengraxantes, decapantes/inibidores, aditivos e passivações.
- Processos decorativos de alto desempenho como: cobre alcalino estável e isento de cianeto, cobre ácido brilhante e nivelado, níquel semibrilhante dúctil, níquel brilhante com baixo stress e cromo microfissurado.

Perfil da Empresa

A SurTec do Brasil iniciou suas operações em 1999, tendo como objetivo desenvolver, fabricar e comercializar produtos químicos para a indústria de tratamentos de superfícies (galvanoplastia e fosfatização).

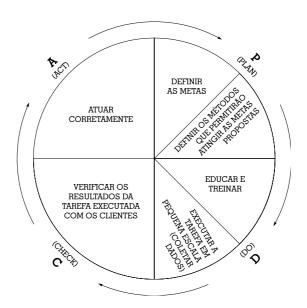
É subsidiária da **SurTec International GmbH**, com sede em Zwingenberg, no estado de Hessen, Alemanha, empresa detentora de alta tecnologia em processos de última geração e que atende as mais rígidas exigências da indústria mundial.

Situada em São Bernardo do Campo, numa área de 5.600 m² e com capacidade instalada para a fabricação de 6.000 toneladas/ano, a **SurTec do Brasil** atua nos principais estados brasileiros, com uma equipe de vendas e assistência técnica cujo principal objetivo é prestar serviços e indicar soluções.

Em junho de 2005, a **SurTec do Brasil** inaugurou moderno **Centro Tecnológico** com o principal objetivo de ser o polo centralizador de pesquisa e desenvolvimento tecnológico para todo o grupo SurTec mundial, numa reação inversa e pioneira do que tem ocorrido em nosso mercado nos dias de hoje.

Política da Qualidade

A Diretoria da SurTec do Brasil, através da implementação do Sistema de Gestão da Qualidade, baseado na norma ISO 9001:2000, define as ações e responsabilidades de seus colaboradores para que o cliente perceba excelência em serviços, produtos e atendimento de seus requisitos.


Objetivos da Qualidade

- Como forma de suportar a política da qualidade adotada pela empresa, os seguintes objetivos foram definidos para a qualidade:
 - Gerenciar a participação nos segmentos de Zinco -Níquel e Zinco Alcalino.
 - Promover a capacitação e desenvolvimento dos colaboradores para que contribuam com a qualidade.
 - 3. Cumprir os prazos de entrega de produtos e servicos que atendam os requisitos pré-estabelecidos em comum acordo junto aos nossos clientes, elevando o nível de percepção da nossa qualidade em produtos e serviços.
 - Conscientizar os Clientes ecologicamente para uso de processos menos agressivos.
 - Implantar o Sistema de Gestão Ambiental. 5.
 - Acompanhar mensalmente o SGQ do Fornecedor 6. de Processo SurTec (industrialização).

Ciclo PDCA

Os termos no Ciclo PDCA têm o seguintes significados:

Planejamento (P)

Toda ação deve ser planejada de maneira participativa, de tal modo que o plano seja um comprometimento de todos.

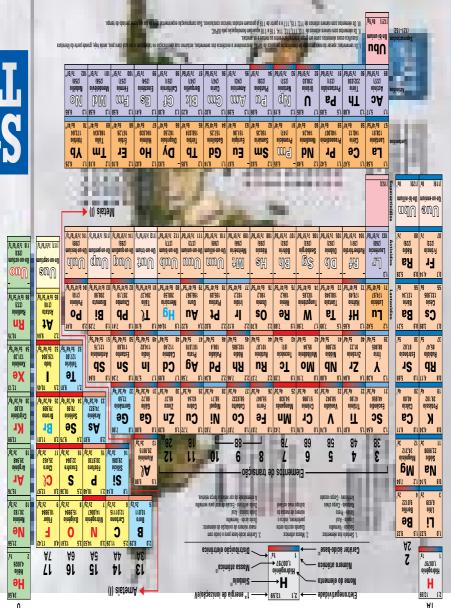
Execução (D)

Execução das tarefas como previsto no plano e coleta de dados para verificação do processo. Nesta etapa, é essencial a execução em pequena escala.

Verificação (C)

A partir dos dados coletados com os clientes, comparam-se esses dados com o plano.

Ações corretivas (A)


O quarto quadrante do Ciclo PDCA corresponde às ações corretivas, que são conduzidas quando algum problema é localizado durante a fase de verificação.

A Empresa no Brasil

nepresentantes	
Belo Horizonte, MG	(31) 9217 1165
D: 1 7 . DI	(31) 9196 7429
nio de Janeiro. Kj	(21) 3373 1445 (21) 2471 3866
Campinas, SP	(19) 3246 3632
Curitiba, PR	(41) 9184 2367
Joinville, SC	(47) 9971 8032
Canoas, RS	(51) 3031 4646
Caxias do Sul, RS	(54) 3204 1151
Ceará, Piauí, Paraíba, Pernambuco)	(31) 9196 7429
Manaus, AM	(92) 9107 2675
	Rio de Janeiro. RJ Campinas, SP Curitiba, PR Joinville, SC Canoas, RS Caxias do Sul, RS Nordeste (Rio Grande do Norte. Ceara, Piant, Paranhouco)

ins If

Alguns potenciais de eletrodos

Metal reduzido	Metal oxidado (1 ion-grama/litro)	E° (volts)
Cs	Cs ⁺ + e	+ 3,02
Li	Li ⁺ + e	+ 3,02
Rb	$\mathrm{Rb^{+}}$ + e	+2,99
K	K ⁺ + e	+ 2,92
Βα	$B\alpha^{++}$ + 2e	+ 2,90
Sr	Sr ⁺⁺ + 2e	+ 2,89
Са	Cα ⁺⁺ + 2e	+ 2,87
Να	$N\alpha^+$ + e	+ 2,71
Mg	Mg ⁺⁺ + 2e	+ 2,34
Al	Al +++ 3e	+ 1,67
Mn	Mn ⁺⁺ + 2e	+ 1,05
Zn	$Zn^{++} + 2$	+ 0,76
Cr	Cr ⁺⁺⁺ + 3	+ 0,71
Fe	Fe ⁺⁺ + 2e	+ 0,44

Metal reduzido	Metal oxidado (1 íon-grama/litro)	E° (volts)
Cd	Cd ⁺⁺ + 2e	+ 0,40
Со	Co ⁺⁺ + 2e	+ 0,28
Ni	Ni ⁺⁺ + 2e	+ 0,25
Sn	Sn ⁺⁺ + 2e	+ 0,14
Pb	Pb ⁺⁺ + 2e	+ 0,13
H	H ⁺ + e	zero
Sb	Sb ⁺⁺⁺ + 3e	- 0,21
As	As ⁺⁺⁺ + 3e	- 0,25
Bi	Bi ⁺⁺⁺ + 3e	- 0,32
Cu	Cu ⁺⁺ + 2e	- 0,35
Hg	Hg ⁺⁺ + 2e	- 0,80
Ag	Ag ⁺ + e	- 0,80
Pt	Pt ⁺⁺ + 2e	- 1,20
Au	Au ⁺⁺⁺ + 3e	- 1,42

Dados e cálculos para eletrodeposição (baseado na eficiência catódica de 100%)

Metal	Símbolo	Valência	Peso Atômico	Peso Específico	Peso Equivalente	mg/Coulomb	Gramas/Ah	Ah/Gramas
Cádmio	Cd	2	112,4	8,64	56,21	0,5824	2,0970	0,4769
Chumbo	Pb	2	207,2	11,3	51,8	1,0740	3,8650	0,5174
Cobalto	Co	2	58,94	8,9	29,47	0,3054	1,0990	0,9097
Cobre (ico)	Cu	2	63,54	8,92	31,79	0,3294	1,1860	0,8433
Cobre (oso)	Cu	l	63,54	8,92	63,57	0,6588	2,3720	0,4217
Cromo	Cr	6	52,01	7,1	8,67	0,0898	0,3230	3,0924
Ferro	Fe	2	55,84	7,9	18,62	0,2893	1,0420	0,9598
Hidrogênio	H	1	1,008	_	_	_	0,0376	_
Estanho (oso)	Sn	2	118,7	7,3	59,35	0,6150	2,2141	0,4517
Níquel	Ni	2	58,69	8,9	29,35	0,3041	1,0950	0,9134
Ouro	Au	3	197,2	19,3	65,73	0,6812	2,4522	0,4078
	Au	l		19,3	197,2	2,0435	7,3567	0,1359
Oxigênio	0	2	16,0	_	_	_	0,2985	_
Prata	Ag	1	107,88	10,5	107,88	1,1179	4,0245	0,2485
Ródio	Rh	3	102,9	12,5	34,30	0,3555	1,2797	0,7814
Zinco	Zn	2	65,38	7,1	32,69	0,3387	1,2195	0,8200

$$\begin{array}{lll} \mbox{Ah/Gramas} & = \frac{96.500}{\mbox{Peso Equivalente x 3.600}} & = \frac{\mbox{Peso Equivalente x 3.600}}{\mbox{96.500}} \\ & = \frac{26.806}{\mbox{Peso Equivalente}} & \mbox{Gramas/Ah} & = \mbox{Peso Equivalente x 0,0373} \\ \\ \mbox{Peso Equivalente} & = \frac{\mbox{Peso Atômico}}{\mbox{Valência}} & = \mbox{mg/Coulomb x 3,6} \end{array}$$

Fórmulas para cálculo

- Espessura da camada
- Tempo de eletrodeposição
- Rendimento de corrente
- Densidade de corrente
- Peso do depósito

Р	e, A	= - e.pe.A 100
	i, A, t, RC	$=\frac{\text{EQ.i.A.t.RC}}{6000}$

i(I)	t, e, RC	$= \frac{60.\text{e.pe.(A)}}{\text{EQ.t.RC}}$
	P, t, A, RC	$= \frac{6000.\text{p.(A)}}{\text{EQ.t.A.RC}}$
RC	e, i, t	$= \frac{6000.\text{e.pe}}{\text{EQ.i.t}}$
	p, i, A, t	= 6000.p EQ.i.A.t
	i, e, RC	= 60.e.pe EQ.i.RC
	i, A, p, RC	= 6000.p EQ.i.A.RC

е

p, A

i, t, RC

EQ = Equivalente eletroquímica em g/Ah

 $\mathbf{A} = \mathbf{\acute{A}} \operatorname{reg} \operatorname{em} \operatorname{dm}^2$

I = Corrente em A

i — Densidade de corrente em A/dm²

t = Tempo de deposição em minutos

RC = Rendimento de corrente em %

e = Espessurα em micrômetros

 ${f pe}\ =\ {
m Peso}\ {
m espec}$ ífico do metal depositado

p = Peso do depósito em g

100.p

pe.A

EQ.i.t.RC

60.pe

Fórmulas para dimensionamento

Determinação do comprimento do tanque eletrolítico:

$$C = \frac{N(5+c)(5+h)}{H-20} + 10 + \alpha$$

C = comprimento do tanque em centímetros

a = curso de agitação catódica em centímetros

(normalmente $\alpha = 10$ cm)

c = comprimento ocupado por cada peça em cm

H = altura do nível do líquido em cm

h = altura ocupada por cada peça em cm

N = número de peças por carga

Esta equação apresenta duas incógnitas: C e H. Arbitra-se valores de H e determina-se C, escolhendo-se no fim os valores mais razoáveis

Determinação da largura de um tanque eletrolítico:

$$L = 15 + 5.66.1$$

 $L = 15 + 5,66 \,.\, 1$ L = largura do tanque em cm l = largura que as peças ocupam no banho em cm

Dimensionamento dos tanques de simples imersão:

$$nc = \frac{C - 10 - \alpha}{5 + c}$$

Número de gancheiras e distribuição das peças

$$nh = \frac{H - 20}{5 + h}$$

nc = número de peças no comprimento do banho

nh = número de peças na altura do banho

C = comprimento do tanque em centímetros

a = curso da agitação catódica

c = comprimento ocupado por cada peca em cm

h = altura ocupada por cada peça em cm

H = altura do nível do líquido em cm

Dimensionamento da capacidade do retificador:

 $I = s \cdot N \cdot i$

I = intensidade de corrente necessária no retificador, em ampères

i = densidade de corrente A/dm²

s = área de cada peça em decímetro quadrado N = número de peças por carga

Determinação da espessura dos barramentos:

$$S = \frac{I}{ip}$$

S = secção do condutor em milímetros quadrados

I = intensidade de corrente que passa pelo condutor, em ampères

ip = intensidade de passagem característica do material de que é feito o condutor, em ampères por milímetros quadrados

Determinação do tamanho de um tambor:

$$PT = \frac{PM}{T.D} \frac{t}{60}$$

$$AT = \frac{PT}{PP} . AP$$

$$AT = \frac{PT}{PP}$$
. A F

t = tempo de uma carga em minutos

PT = peso total de peças por carga em kg

PM = peso mensal de peças a tratar em kg

PP = peso de uma peça em kg

AP = área de uma peça em decímetros quadrados

VT = volume total interno do tambor em litros

T = horas trabalhadas por dia

D = dias trabalhados por mês

At = área de uma carga de peças em dm²

AT = tamanho do tambor

Cálculo do volume interno do tambor: VT (sextavado)

 $VT = 0.6495 \text{ x diâmetro}^2 \text{ x comprimento}$

Condição que deve ser atendida num tambor:

$$V_0 = (1/3 \alpha 1/2) V_T$$

Vo = volume ocupado pelas pecas no tambor em litros

Volume ocupado pelas peças em um tambor:

$$V_0 = \frac{PT}{d\alpha p}$$

dap = densidade aparente das peças em kg/dm³

Intensidade de corrente necessária num tambor:

$$I = i . AT$$

I = intensidαde de corrente em ampères

i = densidade de corrente

AT = área de uma carga de peças em dm²

Cálculo de potência necessária numa estufa:

$$\mbox{KW} = \mbox{0,0013953} \, . \, \, \frac{\mbox{T}}{\mbox{n}} \, \, (\mbox{0,0004386} \, . \, \mbox{V} \, + \, \mbox{0,12} \, . \, \mbox{Kgf} \, + \, \mbox{Cp} \, . \, \mbox{Kgm})$$

KW = potência necessária para a estufa em quilowatts

T = diferença de temperatura

n = número de horas para conseguir a temperatura

V = volume interno dα estufa, em litros

Kgf = quilo de ferro na constituição interna da estufa

(por dentro do isolamento)

Kgm = quilos de material a ser aquecido no interior da estufa

Cp = calor específico do material a ser aquecido

Fórmulas adicionais para banhos de lavagem:

$$\frac{C_{\alpha}}{C} = R = \frac{q^{n+1}-1}{q-1} \quad \text{onde} \quad q = \frac{Vl \cdot t}{v}$$

 $\mathtt{C}_{\alpha} \ = \ \mathsf{concentra}$ ção do contaminante no líquido arrastado do banho principal

C = concentração máxima tolerada do contaminante no último banho de lavagem

VI = vazão de água de lavagem em litros/minuto

v = volume de líquido arrastado em litros por cada carga

R = fator de diluição

n = número de cascatas

t = tempo entre duas cargas, em minutos

Fórmula simplificada que só tem valor para banhos com duas ou mais cascatas:

$$Vl = \frac{v}{t} \sqrt{n / \frac{c_{\alpha}}{c}}$$

Fórmula para serpentinas de refrigeração:

Área de tubos de refrigeração

$$A = 17.6 \cdot \frac{V.I}{IJ.TT}$$

Vazão de área de refrigeração

$$w = \frac{V.I}{1,293}$$

A = área dos tubos de refrigeração em dm²

V = tensão com que trabalha o banho (volts)

= intensidade de corrente em ampères

TT = diferença das temperaturas

U = constante que vale 25 para banhos com convecção livre,

50 para banhos com convecção leve (maior caso em galvanoplastia) e

150 em casos de convecção forçada w = vazão de água em litros/hora

Fórmula para refrigeração de emergência:

$$G = \frac{B (T - Tn)}{80 + Tn}$$

 $\begin{array}{ll} {\tt G} & = \mbox{ quilos de gelo necessário} \\ {\tt T} & = \mbox{ temperatura atual do banho} \end{array}$

 ${\rm Tn} \ = \ {\rm temperatur} \ {\rm norm} \ {\rm al} \ {\rm do} \ {\rm banho}$

= volume do banho em litros

Equivalência de Unidades de Medida

 $1 \text{ mi} \cdot \text{min} = 60 \text{ mi} \cdot \text{h}^{-1} = 88 \text{ pés} \cdot \text{s}^{-1}$

 $1 \text{ km} \cdot \text{h}^{-1} = 0.2778 \text{ m} \cdot \text{s}^{-1}$ $1 \text{ mi} \cdot h^{-1} = 0.4470 \text{ m} \cdot \text{s}^{-1}$

```
Comprimento __
     1 \text{ m} = 100 \text{ cm} = 1000 \text{ mm} = 10^6 \mu \text{m} = 10^9 \text{ nm}
     1 \text{ km} = 1000 \text{ m} = 0.6214 \text{ mi}
     1 \text{ m} = 3,281 \text{ pés} = 39,37 \text{ pol}
     1 \text{ cm} = 0.3937 \text{ pol}
     1 \text{ ft} = 30.48 \text{ cm}
     l pol = 2,540 cm
     1 \text{ mi} = 5280 \text{ pés} = 1,609 \text{ km}
     1 \text{ Å} = 10^{-10} \text{ m} = 10^{-8} \text{ cm} = 10^{-1} \text{ nm}
Área _____
     1 \text{ cm}^2 = 0.155 \text{ pol}^2
     1 \text{ m}^2 = 10^4 \text{ cm}^2 = 10.76 \text{ pés}^2
     1 \text{ pol}^2 = 6.452 \text{ cm}^2
     1 \text{ pé}^2 = 144 \text{ pol}^2 = 0.0929 \text{ m}^2
Volume
     1 \text{ litro} = 1000 \text{ cm}^3 = 10^{-3} \text{ m}^3 = 0.0351 \text{ pés}^3 = 61.02 \text{ pol}^3
     1 \text{ pé}^3 = 0.02832 \text{ m}^3 = 28.32 \text{ litros} = 7.477 \text{ galões}
Tempo _____
     1 \min = 60 s
     1 h = 3600 s
     1 dia = 86400 s
     1 \text{ ano } = 3.156 \times 10^7 \text{ s}
Velocidade ____
     1 \text{ cm} \cdot \text{s}^{-1} = 0.03281 \text{ pé} \cdot \text{s}^{-1}
     1 \text{ pé} \cdot \text{s}^{-1} = 30.48 \text{ cm} \cdot \text{s}^{-1}
```

Aceleração _____

 $1 \text{ m} \cdot \text{s}^{-2} = 100 \text{ cm} \cdot \text{s}^{-2} = 3,281 \text{ pés} \cdot \text{s}^{-2}$

 $1 \text{ cm} \cdot \text{s}^{-2} = 0.01 \text{ m} \cdot \text{s}^{-2} = 0.03281 \text{ pé} \cdot \text{s}^{-2}$ $1 \text{ pé} \cdot \text{s}^{-2} = 0.3048 \text{ m} \cdot \text{s}^{-2} = 30.48 \text{ cm} \cdot \text{s}^{-2}$

 $1 \text{ mi} \cdot \text{h}^{-1} \cdot \text{s}^{-1} = 1,467 \text{ pé} \cdot \text{s}^{-2}$

Massa

 $1 \text{ kg} = 10^3 \text{ g} = 0.0685 \text{ slug}$

 $1 g = 6.85 \times 10^{-5}$ slug

1 slug = 14,59 kg

1 utm = 9.81 kg

 $1 u = 1,661 \times 10^{-27} \text{ kg}$

Força ____

 $1 \text{ N} = 10^5 \text{ din} = 0.2247 \text{ lb}$

 $1 \text{ lb} = 4.45 \text{ N} = 4.45 \times 10^5 \text{ din}$

Pressão

 $1 P\alpha = 1 N \cdot m^{-2} = 1,451 \times 10^{-4} lb \cdot pol^{-2} = 0,209 lb \cdot pe^{-2}$

l lb·pol⁻² = 6891 Pα

 $1 \text{ lb} \cdot \text{pé}^{-2} = 47,85 \text{ Pa}$

 $1 \text{ atm} = 1,013 \times 10^5 \, \text{Pa} = 14,7 \, \text{lb} \cdot \text{pol}^{-2} = 2177 \, \text{lb} \cdot \text{pé}^{-2}$

Energia ___

 $1 \text{ J} = 10^7 \text{ ergs} = 0.239 \text{ cal}$

1 cal = 4,186 J (baseado na caloria 15°)

 $1 \text{ ft} \cdot \text{lb} = 1,356 \text{ J}$

1 Btu = 1055 J = 252 cal

 $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$

 $1 \text{ kWh} = 3.600 \times 10^6 \text{ J}$

Equivalência massa-energia

 $1 \text{ ka} \leftrightarrow 8.988 \times 10^{16} \text{ J}$

 $1 u \leftrightarrow 931.5 \text{ MeV}$

 $1 \text{ eV} \leftrightarrow 1.073 \times 10^{-9} \text{ u}$

Potência _____

 $1 W = 1 J \cdot s^{-1}$

l hp = 746 W = 550 pés·lb·s⁻¹

 $1 \text{ Btu} \cdot \text{h}^{-1} = 0.293 \text{ W}$

Conversão de Unidades de Medidas

Para converter	em	multiplicar por
A/dm ²	A/m ²	100
$\overline{\mathrm{A/p}}\mathrm{\acute{e}}^2$	A/dm ²	0,108
Ampères hora	Coulombs	3.600,0
Ampères hora	Faradays	0,03731
Angstrom	Metro	1×10^{-10}
Angstrom	Micrometros	1×10^{-4}
Bar	Atmosfera	0,9869
Barril (USA)-líquido	Galão	31,5
Btu	Kcal	0,2520
Btu	KWh	0,00029
Btu/minuto	CV	0,02356
Cavalo força	Quilowatts	0,7457
Centímetro quadrado	Metro quadrado	0,0001
Centímetro quadrado	Polegada quadrada	0,1550
Centímetro quadrado	Milímetro quadrado	100
Centímetros	Pés	$3,281 \times 10^{-2}$
Centímetros	Polegadas	0,3937
Centímetros cúbicos	Litros	0,001
Centímetros cúbicos	Galão (USA - líquido)	$2,642 \times 10^{-4}$
Coulombs	Faradays	$1,036 \times 10^{-5}$
Decímetros	Metros	0,1
Dias	Segundos	86.400,0
Faradays	Ampère hora	26,80
Faradays	Coulombs	$9,649 \times 10^{4}$
Galão	Litro	3,785
Grama	Onça (avdp)	0,03527
Grama	Onça (troy)	0,03215
Grama-caloria	Btu	$3,9683 \times 10^{-3}$
Gramas/litro	ppm	1000,0
Graus Celsius	Fahrenheit	$(^{\circ}C \times 9/5) + 32$
Hectare	Acre	2,471
Libra	Grama	453,5924
Libra	Quilograma	0,4536

Para converter	em	multiplicar por
Libra	Onça	16
Libra (avoirdupois)	Onça (troy)	14,5833
Libra (troy)	Grama	373,24177
Libra/galão	Gramas/litro	120
Litro	Galão (USA-líquido)	0,2642
Litro	Pinto (pints = 1/8 do galão)	2,113
Metro	Pé	3,281
Metro	Polegada	39,37
Metro	Centímetro	100
Metro cúbico	Pé cúbico	35,31
Metro cúbico	Polegada cúbica	61.023,0
Metro cúbico	Galão (USA- líquido)	264,2
Metro cúbico	Litro	1.000,0
Metro quadrado	Polegada quadrada	1.550,0
Micrometro	Metro	1 x 10 ⁻⁶
Milha	Quilômetro	1,609
Miligrama	Grama	0,001
Mililitro	Litro	0,001
Milímetro	Centímetro	0,1
Milímetro	Polegada	0,03937
Milímetro	Metros	0,001
Mils	Polegada	0,001
Mils (milésimo de polegada)	Centímetro	$2,540 \times 10^{-3}$
Onçα	Grama	28,349527
Onça	Libra (pounds)	0,0625
Onçα	Onça (troy)	0,9115
Onça (troy)	Gramas	31,103481
Onça líquida	Litro	0,02957
Onça líquida (fl oz)	Mililitro	29,57
Onça/galão (oz/gal)	Gramas/litro	7,49
Onça/galão (fl oz/gal)	Mililitro/litro	7,81
Pé (EUA)	Quilometro	$3,048 \times 10^{4}$
Pé	Metro	0,3048
Pé	Milímetro	304,8
Pé	Centímetro	30,48
Pé cúbico	Metro cúbico	0,02832
Pé cúbico	Polegada cúbica	1.728,0
Pé cúbico	Galão (USA - líquido)	7,48052
Pé cúbico	Litro	28,32
Pé quadrado	Decímetro quadrado	9,29

Para converter	em	multiplicar por
Pé quadrado	Metro quadrado	0,09290
Pinto	Litro	0,4732
Pinto (pints)	Galão	0,125
Pinto/galão	Mililitro/litro	125
Polegada	Centímetro	2,540
Polegada	Metro	$2,540 \times 10^{-2}$
Polegada	Milímetro	25,40
Polegada	Milésimo de polegada (mils)	1.000,0
Polegada quadrada	Centímetro quadrado	6,452
Quarto	Mililitro	946,35
Quarto/galão	Mililitro/litro	250
Quilate	Grama	0,200
Quilograma	Grama	1.000,0
Quilograma	Libra (pounds)	2,205
Quilograma caloria	Btu	3,968
Quilometro	Milha	0,6214
Quilometro	Jardas	1.094,0
Quilômetros/hora	Metros/minuto	16,67
Quilowatts	Cavalo força	1,341
Quilowatts-hora	Btu	3.413,0
Watts	Btu/hora	3,4129
Watts	Cavalo força	$1,341 \times 10^{-3}$

Definições de Unidades SI

Ampère (A). O ampère é a corrente constante que, se mantida em dois condutores paralelos, de comprimento infinito, de seção circular desprezível, que, colocados à distância de um metro no vácuo, produziria uma força entre esses condutores igual a 2×10^{-7} newtons por metro de comprimento.

Candela (cd). A candela é a intensidade luminosa, na direção perpendicular de uma superfície de 1/600.000 metros quadrados de um corpo negro, na temperatura de solidificação da platina, a pressão de 101.325 newtons por metro quadrado.

Coulomb (C). O coulomb é a quantidade de eletricidade transportada em um segundo pela corrente de um ampère.

Esterorradiano (sr). O esterorradiano é o ângulo sólido que, tendo o vértice no centro de uma esfera, determina na superfície da esfera uma área igual a um quadrado de lados iguais ao raio da esfera.

Farad (F). O farad é a capacitância de um capacitor entre cujas placas aparece uma diferença de potencial de um volt, quando ele é carregado com uma quantidade de eletricidade igual a um coulomb.

Henry (H). O henry é a indutância de um circuito fechado, no qual uma força eletromotriz de um volt é produzida, quando a corrente elétrica no circuito varia uniformemente de um ampère por segundo.

Joule (J). Um joule é o trabalho realizado quando o ponto de aplicação de uma força igual a um newton desloca-se de um metro na direção da força.

Kelvin (K). O *kelvin*, unidade de temperatura termodinâmica, é a fração 1/273,16 da temperatura termodinâmica do ponto triplo da água.

Lúmen (lm). O *lúmen* é o fluxo luminoso emitido no ângulo sólido de um esterorradiano por uma fonte punctual uniforme de intensidade igual a uma candela.

Metro (m). O *metro* é o comprimento igual a 1.650.763,73 comprimentos de onda no vácuo de radiação, correspondente à transição entre os níveis $2p_{10}$ e $5d_r$, do átomo de Kr-86.

Mole (mol). O mole é a quantidade de substância de um sistema que contém tantas entidades elementares quantos átomos de carbono em 0,012 kg de C-12. As entidades elementares têm de ser especificadas e podem ser átomos, moléculas, íons, elétrons, outras partículas ou grupos especificados de tais partículas.

Newton (N). O newton é a força que dá a um corpo de um quilograma de

massa, a aceleração de um metro por segundo quadrado.

Ohm (Ω). O ohm é a resistência elétrica entre dois pontos de um condutor, quando uma diferença de potencial constante de um volt, aplicada entre esses dois pontos, produz neste condutor uma corrente de um ampère, desde que este condutor não seja fonte de nenhuma força eletromotriz.

Quilograma (kg). O quilograma é a unidade de massa. É igual à massa do protótipo internacional do quilograma. (O protótipo internacional do quilograma é um cilindro especial de uma liga platina-irídio que está conservada em uma redoma, em Sèvres, França, pelo Bureau Internacional de Pesos e Medidas.)

Radiano (rad). O radiano é o ângulo plano entre dois raios de um círculo que determinam, na circunferência, um arco de comprimento igual ao raio.

Segundo (s). O segundo é a duração de 9.192.631.770 períodos da radiação, correspondente à transição entre os dois níveis hiperfinos do estado fundamental do átomo de césio-133.

Volt (V). O volt é a diferença de potencial elétrico entre dois pontos de um fio condutor por onde passa uma corrente constante de um ampère, quando a potência dissipada entre esses dois pontos é igual a um watt.

Watt (W). O watt é a potência que dá origem à produção de energia na taxa de um joule por segundo.

Weber (Wb). O weber é o fluxo magnético que, atravessando o circuito de uma espira, produz neste circuito uma força eletromotriz de um volt, ao ser reduzido a zero, numa taxa uniforme, em um segundo.

Prefixos SI. Os nomes de múltiplos e submúltiplos de unidades SI, podem ser formados pela aplicação de prefixos, como pode ser visto na tabela a seguir.

Unidades de Medida

Unidades de Base - Sistema internacional

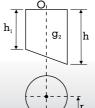
Grandeza	Unidade	Representação
comprimento	metro	m
massa	quilograma	kg
tempo	segundo	s
intensidade de corrente elétrica	ampère	A
temperatura termodinâmica	kelvin	K
intensidade luminosa	candela	cd
quantidade de matéria	mol	mol

Unidades Derivadas - Sistema internacional

Gran	ndeza	Unidade	Representação
άreα		metro quadrado	m ²
volume		metro cúbico	m ³
velocidade		metro por segundo	m.s ⁻¹
aceleração		metro por segundo ao quadrado	m.s ⁻²
massa específi	ca	quilograma por metro cúbico	kg.m ⁻³
luminância		candela por metro quadrado	cd.m ⁻²
atividade radio	oativa	por segundo	s ⁻¹
frequência		hertz(Hz)	s ⁻¹
força		newton (N)	kg.m.s ⁻²
pressão		pascal (Pa)	N.m ⁻²
trabalho,energ	iα	joule(J)	$kg.m.s^{-2} = N.m$
potência		watt (W)	$kg.m.s^{-3} = J.s^{-1}$
carga elétrica		coulomb(C)	A.s
potencial elétri	со	volt(V)	J.C ⁻¹
fluxo de induçõ	to magnética	weber(Wb)	V.s
indutância		henry(H)	Wb.A ⁻¹
momento de un	na força	newton.metro	N.m
viscosidade dir	nâmica	pascal.segundo	Pa.s
capacidade tér	mica e entropia	joule por kelvin	J.K ⁻¹
calor específico)	joule por kilograma.kelvin	J(kg.K)-1
campo elétrico		volt por metro	V.m ⁻¹

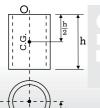
Unidades "NÃO SI"

Grandeza	Unidade	Valor (unidades SI)
comprimento	unidade astronômica (UA)	1,495978 × 10 ¹¹ m
comprimento	parsec(pc)	$3,085680 \times 10^{16} \mathrm{m}$
comprimento	angstrom(Å)	10 ⁻¹⁰ m
comprimento	milha marítima	1852 m
comprimento	micrometro (µm)	10 ⁻⁶ m
comprimento	milha terrestre (mile)	1 609, 3 m
comprimento	jarda (yard)	0,9144 m
comprimento	pé (foot)	0,30480 m
comprimento	palmo (span)	22,86 × 10 ⁻² m
comprimento	polegada (inch)	2,540 × 10 ⁻² m
volume	litro (l ou L)	10 ⁻³ m ³
volume	barril de petróleo	0,159 m ³
volume	galão americano	$3,785 \times 10^{-3} \text{m}^3$
volume	galão inglês	$4,545963 \times 10^{-3} \mathrm{m}^3$
massa	unidade de massa atômica(u)	1,66057 × 10 ⁻²⁷ kg
massa	tonelada(t)	1000 kg
massa	quilate	2 × 10 ⁻⁴ kg
massa	dracma	$1,772 \times 10^{-3} \text{ kg}$
massa	libra (pound)	0,453 kg
massa	onça (avoirdupois)	$28,35 \times 10^{-3}\mathrm{kg}$
massa	onça (apothecaria)	$31,10 \times 10^{-3} \mathrm{kg}$
energia	elétronvolt	$1,60218 \times 10^{-19}$ J
área	are (a)	102 m ²
área	hectare(ha)	104 m ²
área	alqueire (paulista)	24200 m ²
área	pé quadrado	9, 290304 m ²
velocidade	nó	1852 / 3600 m.s ⁻¹
aceleração	gal	10 ⁻² m.s ⁻²
pressão	bar	105 Pa
pressão	milimetro de mercúrio (mmHg)	103,322 Ρα
pressão	torricelli (torr)	103,322 Pα
pressão	barie (b)	0,1 Ρα
pressão	atmosfera normal(atm)	101325 Pα
força	dyne(dyn)	10 -5 N
força	quilograma-força(kgf)	9,80665 N
trabalho e energia	erg	10 ⁻⁷ J
trabaho e energia	caloria (cal)	4,1868 J
potência	cavalo-vapor(CV)	735,5 W
potência	horse-power	745,7 W


Cálculo de superfície e volume dos sólidos

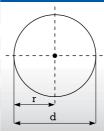
Cilindro

$$\begin{array}{lll} A_{_L} = & 2\pi r h \; = \; \pi.d.h \\ V = & \pi \:.\: r^2 h = \frac{d^2\pi}{4} \:.\: h \end{array}$$

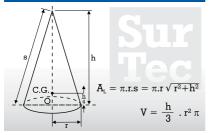

Cilindro com base(s) oblíqua(s)

$$\mathbf{A}_{\!\scriptscriptstyle L} = \pi \mathbf{r} \left(\mathbf{h} \! + \! \mathbf{h}_{\!\scriptscriptstyle 1} \right)$$

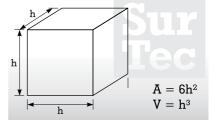
$$A = V \cdot r^2 \frac{h + h_1}{2}$$


Cilindro oco

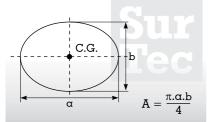
$$A = 2\pi h (r+r_1)$$

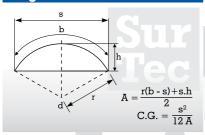

$$V_{parede} = \pi.h (r^2 - r_1^2)$$

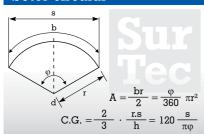
Círculo

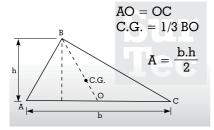


$$A = \pi r^2 = \frac{\pi d^2}{4}$$

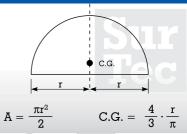

Cone

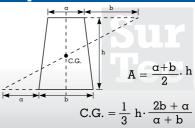

Cubo

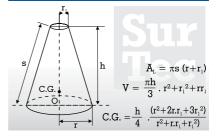

Elipse

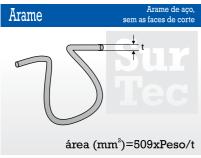

Segmento circular


Setor circular

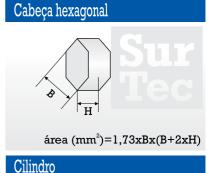

Triângulo


Paralelepípedo

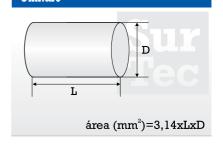

Semicírculo

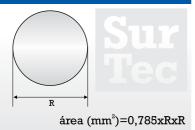

Trapézio

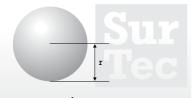
Tronco de Cone



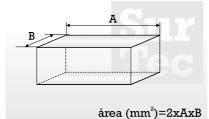

Cálculo de superfícies de fixadores



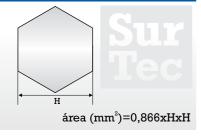




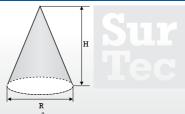
Círculo



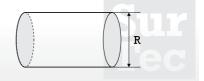
Esfera



Área da esfera = $4\pi r^2$ Volume da esfera = $4\pi r^3/3$

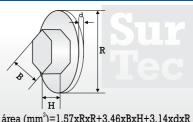

Faces maiores de um paralelepípedo

Hexágono

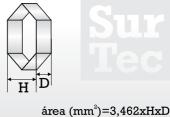


Cone

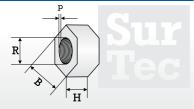
área (mm²)=1,57xRxroot(RxR/4+HxH)


Extremos do cilindro

área (mm²)=1,57xRxR

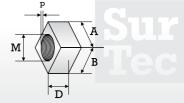

Flange

Inclui a parte de trás da flange

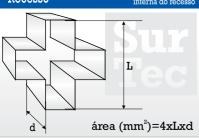


área (mm²)=1,57xRxR+3,46xBxH+3,14xdxR

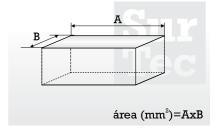
Lado hexagonal



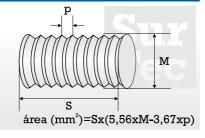
Porca hexagonal


área(mm²)=1,73xBx(B+2xH)-1,57xRxR+Hx(5,56xR-3,67xp)

Porca quadrada



 $area(mm^2) = 2xAxB + 2xAxD + 2xBxD + Dx(5,56xM - 3,67xp) - 1,57xMxM$


Recesso Inclui a parte interna do recesso

Retângulo

Rosca

Tabela de conversão peso específico / graus Baumé (°Bé)

Líquidos mais pesados que água

°Bé	Peso Específico								
l	1,007	15	1,116	29	1,252	43	1,427	57	1,656
2	1,014	16	1,125	30	1,263	44	1,440	58	1,676
3	1,021	17	1,134	31	1,274	45	1,454	59	1,695
4	1,029	18	1,146	32	1,286	46	1,469	60	1,714
5	1,036	19	1,152	33	1,297	47	1,484	61	1,736
6	1,043	20	1,161	34	1,309	48	1,500	62	1,758
7	1,051	21	1,171	35	1,321	49	1,516	63	1,779
8	1,059	22	1,180	36	1,333	50	1,532	64	1,801
9	1,067	23	1,190	37	1,346	51	1,549	65	1,823
10	1,075	24	1,200	38	1,358	52	1,566	66	1,847
11	1,083	25	1,210	39	1,371	53	1,583	67	1,872
12	1,091	26	1,220	40	1,385	54	1,601	68	1,897
13	1,099	27	1,231	41	1,398	55	1,618	69	1,921
14	1,108	28	1,241	42	1,412	56	1,637	70	1,946

Líquidos mais leves que água

°Bé	Peso Específico								
10	1,000	16	0,960	22	0,922	28	0,889	50	0,783
11	0,993	17	0,954	23	0,917	29	0,884	55	0,762
12	0,986	18	0,948	24	0,911	30	0,878	60	0,742
13	0,980	19	0,941	25	0,907	35	0,852	65	0,724
14	0,973	20	0,935	26	0,900	40	0,828	70	0,706
15	0,967	21	0,929	27	0,895	45	0,804	75	0,689

Tabela de conversão de °Bé para g/L de ácido crômico

°Bé g/I	de CrO ₃	°Bé	g/L de CrO ₃
15,00	165,0	22,50	264,0
15,50	170,0	23,00	270,0
16,00	178,0	23,50	278,0
16,50	184,0	24,00	286,0
17,00	190,0	24,50	293,0
17,50	197,0	25,00	300,0
18,00	204,0	25,50	307,0
18,50	211,0	26,00	314,0
19,00	218,0	26,50	322,0
19,50	224,0	27,00	330,0
20,00	230,0	27,50	338,0
20,50	236,0	28,00	345,0
21,00	243,0	28,50	353,0
21,50	250,0	29,00	361,0
22,00	257,0	29,50	368,0

Equivalência entre graus Baumé (°Bé) e densidade específica (D.E.)

D.E. =
$$\frac{145.0}{145.0 - {}^{\circ}\text{B\'e}}$$

$$^{\circ}$$
Bé = $\frac{145,0 - 145,0}{D.E.}$

Conteúdo metálico de sais utilizados na eletrodeposição

Nome	Fórmula	PM	% do Metal
Chumbo	Pb	207,2	_
Fluoborato de Chumbo	Pb (BF ₄) ₂	380,9	54,4
Carbonato Básico de Chumbo	2PbCO ₃ .Pb(OH) ₂	775,7	80,15
Nitrato de Chumbo	Pb(NO ₃) ₂	331,2	62,6
Sulfamato de Chumbo	$Pb(NH_2SO_3^{3/2})_2$	399,2	51,9
Cádmio	Cd	112,4	_
Cianeto de Cádmio	Cd(CN)	164,5	68,4
Óxido de Cádmio	CdO	128,4	87,5
Cobre	Cu	63,5	_
Cianeto de Cobre	CuCN	89,59	70,9
Cianeto Duplo de Cobre e Sódio	Na ₂ Cu(CN) ₃	187,6	33,9
Cianeto Duplo de Cobre e Potássio	K ₂ Cu(CN) ₃	219,8	28,9
Hidróxido de Cobre	Ču(OH),	97,6	65,1
Sulfato de Cobre Pentahidratado	CuSO ₄ .5H ₂ O	249,7	25,5
Fluoborato de Cobre	Cu(BF ₄) ₂	_	26,8
Cobalto	Co	58,9	_
Sulfato de Cobalto	CoSO ₄ .7H ₂ O	281,1	21,0
Cromo	Cr	52,0	_
Ácido Crômico	CrO ₃	100,0	52,0
Bicromato de Sódio	$N\alpha_2Cr_2O_7.2H_2O$	298,0	34,9
Bicromato de Potássio	$K_2Cr_2O_7$	294,2	35,35
Hidróxido de Cromo	Cr(0H) ₃ .2H ₂ 0	139,1	37,4
Estanho	Sn	118,7	_
Sulfato Estanhoso	SnSO ₄	214,8	55,3
Cloreto Estanhoso	SnCl ₂ .2H ₂ 0	225,6	52,6
Fluoborato de Estanho	SnCBF _{4/2}	292,3	40,6
Estanato de Sódio	$N\alpha_2SnO_3.3H_2O$	266,75	44,5
Metanosulfonato de Estanho	Sn(CH ₃ SO ₃) ₂	308,9	38,4
Sulfamato de Estanho	$Sn(NH_2SO_3)_2$	310,7	38,2

Conteúdo metálico de sais utilizados na eletrodeposição

Nome	Fórmula	PM	% do Metal
Níquel	Ni	58,7	_
Carbonato Básico de Níquel	NiCO ₃ .4NiO.5H ₂ O	507,5	57,9
Carbonato de Níquel	NiCO, 1	118,7	49,5
Cloreto de Níquel	NiCl ₂ .6H ₂ 0	237,7	24,7
Sulfato de Níquel	NiSO ₄ .7H ₂ O	280,9	20,9
Sulfato de Níquel	NiSO ₄ .6H ₂ O	262,9	22,3
Sulfamato de Níquel	Ni(NH ₂ .SO ₃) ₂	250,9	23,4
Fluoborato de Níquel	Ni(BF ₄) ₂	118,3	49,6
Ouro	Au	197,0	_
Cloreto de Ouro	AuCl	303,3	84,7
Cianeto de Ouro	AuCŇ	223,0	88,3
Cianeto Duplo de Ouro e Potássio	KAu(CN) ₂	288,1	68,4
Prata	Ag	107,9	_
Cianeto de Prata	AgCN	133,9	80,6
Cianeto Duplo de Prata e Potássio	KAg(CN) ₂	199,0	54,2
Nitrato de Prata	AgNO ₃	169,9	63,5
Zinco	Zn	65,4	_
Amonium Cloreto de Zinco	ZnCl ₂ .2NH ₄ Cl	243,3	26,9
Cloreto de Zinco	ŽnCl ₂	136,3	48,0
Cianeto de Zinco	Zn(CN),	117,4	55,7
Hidróxido de Zinco	Zn(OH) ₂	99,4	65,8
Cianeto Duplo de Sódio e Zinco	$N\alpha_2 Zn(CN)_4$	215,4	30,3
Sulfato de Zinco	$ZnSO_4.7H_2O$	287,5	22,7
Óxido de Zinco	ZnO [*]	81,4	80,3

Concentração de matéria-prima

	Ácido Clorídrico	Ácido Nítrico	Ácido Sulfúrico	Ácido Fosfórico	Hidróxido de Amônia
Peso Específico	1,18	1,41	1,84	1,69	0,90
% Média de ácido ou base presente na concentração	37,3%	70,0%	96,5%	85,0%	29,0%
Peso de ácido ou base (em gramas) em solução por litro de reagente (médio)	442	989	1.772	1.436	535
Peso molecular	36,47	63,02	98,08	98,0	35,05
Normalidade do reagente concentrado	12	16	36	44	15
nº de mL necessários para 1L de solução reagente 1N	83	64	28	23	66

Cianeto de sódio necessário para dissolver sais metálicos

A tabela ao lado mostra a quantidade de cianeto de sódio necessário para dissolver 1.000 g de óxido ou sais cianídricos metálicos

1.000 g de	Cianeto de Sódio
Óxido de Cádmio	1.200 g
Cianeto de Cobre *	1.100 g
Cianeto de Zinco	850 g
Óxido de Zinco	2.400 g

^{*} Ouando for usado Cianeto de Potássio serão necessários 1.450 g de KCN, para dissolver 1.000 g de CuCN.

Eficiência catódica em % de diversos processos

Metal	Tipo de banho	Eficiência catódica		
Cádmio	Cianeto	88 — 95		
Chumbo	Fluorborato	100		
Chumbo	Fluorsilicato	100		
Cobalto	Sulfato	95 — 98		
Cobre	Cianeto	30 - 95		
Cobre	Rochelle	40 - 70		
Cobre	Sulfato	97 - 100		
Cromo	Cromo			
	Ácido Sulfúrico	8 - 12		
Cromo	Auto-regulável	16 - 18		
Estanho	Estanato	70 — 90		

Metal	Tipo de banho	Eficiência catódica		
Estanho	Fluorborato	100		
Estanho	Sulfato	90 — 95		
Ferro	Cloreto	90 — 98		
Níquel	Sulfato	94 – 98		
Níquel	Sulfamato	94 – 98		
Ouro	Cianeto	70 — 90		
Prata	Cianeto	100		
Ródio	Sulfato	10 – 18		
Zinco	Cianeto	85 — 90		
Zinco	Cloreto	98 — 99		
Zinco	Sulfato	99		

Velocidade de deposição em minutos de diversos processos

Velocidade de deposição de níquel watts Eficiência catódica de 95%

Espessura do depósito	Peso	Tempo (minutos) necessário para deposição com várias densidades de corrente (A/dm²)				
(μm)	g/dm ²	1,0	1,5	2,5	4,0	
1,0	0,089	4,4	2,9	1,7	1,1	
5,0	0,445	21,9	14,6	8,8	5,5	
7,5	0,668	32,9	21,9	13,2	9,1	
10,0	0,890	43,9	29,3	17,6	11,0	
12,5	1,113	54,9	36,6	22,0	13,8	
15,0	1,335	65,9	43,9	26,4	16,4	
17,5	1,558	76,8	51,2	30,8	19,2	
20,0	1,780	87,8	58,5	35,1	21,9	
22,5	2,003	98,8	65,8	39,6	24,7	
25,0	2,225	109,7	73,1	43,9	27,4	

Velocidade de deposição de cobre em solução cianídrica Eficiência catódica de 75%

Espessura do depósito	Peso	Tempo (minutos) necessário para deposição com várias densidades de corrente (A/dm²)				
(μm)	g/dm ²	1,0	1,5	2,5	4,0	
1,0	0,08	2,5	1,6	1,0	0,6	
5,0	0,446	12,5	8,4	5,0	3,1	
7,5	0,669	18,8	12,5	7,5	4,7	
10,0	0,892	25,0	16,6	10,1	6,3	
12,5	1,115	31,3	21,0	12,5	7,9	
15,0	1,338	37,6	25,1	15,0	9,3	
17,5	1,561	43,8	29,3	17,5	10,9	
20,0	1,784	50,1	33,4	20,0	12,5	
22,5	2,007	56,4	37,6	22,5	14,1	
25,0	2,230	62,7	41,8	25,0	15,6	

Velocidade de deposição de cobre em solução ácida Eficiência catódica de 100%

Espessura do depósito	Peso	Tempo (minutos) necessário para deposição com várias densidades de corrente (A/dm²)				
(μm)	g/dm ²	1,0	1,5	2,5	4,0	
1,0	0,093	3,9	2,6	1,6	1,0	
5,0	0,446	19,7	13,2	7,9	4,9	
7,5	0,669	29,6	19,7	11,9	7,4	
10,0	0,892	39,5	26,3	15,8	9,8	
12,5	1,115	49,3	32,9	19,8	12,4	
15,0	1,338	59,2	39,5	23,7	14,9	
17,5	1,561	69,0	46,1	27,7	17,3	
20,0	1,784	79,0	52,6	31,6	19,8	
22,5	2,007	88,8	59,2	35,6	22,2	
25,0	2,230	98,7	65,8	39,5	24,7	

Velocidade de deposição de zinco em solução ácida Eficiência catódica de 95%

Espessura do depósito	Peso		Tempo (minutos) necessário para deposição com várias densidades de corrente (A/dm²)					
(μm)	g/dm ²	1,0	1,5	2,5	7,5 4,0 7,3 0,8 7,5 4,1 7,0 8,2 7,5 12,3 7,6,0 16,4			
1	0,071	3,24	2,08	1,3	0,8			
5	0,355	16,2	10,4	6,5	4,1			
10	0,710	32,3	21,2	13,0	8,2			
15	1,065	48,5	32,3	19,5	12,3			
20	1,420	64,7	43,1	26,0	16,4			
25	1,775	80,8	53,9	32,5	20,4			

Velocidade de deposição de zinco em solução cianídrica Relação NaCN/Zn 2,7:1 à 25 °C.

A eficiência catódica depende da densidade de corrente

Espessura do depósito (µm)	Peso	Tempo (minutos) necessário para deposição com várias densidades de corrente (A/dm²)					
	g/dm²	1,0	1,5	2,5	4,0 1,4 7,0 14,0 21,0 28,0		
l	0,071	4,0	2,6	1,6	1,4		
5	0,355	20,0	12,5	8,1	7,0		
10	0,710	40,0	25,0	16,2	14,0		
15	1,065	60,0	37,5	24,3	21,0		
20	1,420	80,0	50,0	32,5	28,0		
25	1,775	100,0	62,5	40,6	35,0		

Velocidade de deposição de estanho em solução ácida Eficiência catódica de 98%

Espessura do depósito (µm)	Peso	Tempo (minutos) necessário para deposição com várias densidades de corrente (A/dm²)					
	g/dm²	1,0	1,5	2,5			
1	0,073	1,8	1,2	0,7	0,4		
5	0,365	8,7	5,8	3,5	2,2		
10	0,730	17,5	11,5	7,1	4,5		
15	1,095	26,2	17,3	10,6	6,7		
20	1,460	34,9	23,0	14,1	8,9		
25	1,825	43,7	28,8	17,7	11,1		

Velocidade de deposição de cromo Eficiência catódica de 15%

Espessura do depósito (µm)		Peso		Tempo (minutos) necessário para deposição com várias densidades de corrente (A/dm²)					
		g/dm ²	8	9	10	15 1,3 2,6 3,9 5,2 7,8 10,4			
0,25		0,018	2,4	2,1	2,0	1,3			
0,50		0,036	4,8	4,3	3,9	2,6			
0,75		0,053	7,2	6,4	5,9	3,9			
1,00		0,071	9,7	8,5	7,8	5,2			
1,50		0,107	14,5	12,8	11,7	7,8			
2,00		0,142	19,3	17,1	15,6	10,4			
2,50		0,178	24,2	21,4	19,5	13,0			

Velocidade de deposição de cádmio Eficiência catódica de 95%

Espessura do depósito	Peso	Tempo (minutos) necessário para deposiçã com várias densidades de corrente (A/dm					
(μm)	g/dm²	1,0	1,5	2,5	4/dm²) 4,0 0,6 2,9 4,3 8,6 12,9 17,2 21,5 25,8 30,1		
1,0	0,086	2,2	1,5	0,9	0,6		
5,0	0,432	11,42	7,6	4,6	2,9		
7,5	0,648	17,1	11,4	6,9	4,3		
10,0	0,864	22,8	15,2	9,2	8,6		
12,5	1,080	28,5	19,0	11,5	12,9		
15,0	1,296	34,2	22,8	13,8	17,2		
17,5	1,512	39,9	26,6	16,1	21,5		
20,0	1,728	45,6	30,4	18,4	25,8		
22,5	1,944	51,3	34,2	20,7	30,1		
25,0	2,160	57,0	38,0	23,0	34,43		

_Manual Técnico 48

Velocidade de deposição de prata Eficiência catódica de 100%

Espessura do depósito (µm)	Peso	Tempo (minutos) necessário para deposição com várias densidades de corrente (A/dm²)					
	g/dm ²	0,2	0,3	0,4	0,5		
1	0,105	6,9	4,6	3,4	2,8		
5	0,525	34,6	23,0	17,3	13,7		
10	1,050	69,1	46,1	34,6	27,5		
15	1,575	103,7	69,1	51,8	41,2		
20	2,100	138,2	92,2	69,1	55,0		
25	2,625	172,8	115,2	86,4	68,8		

Velocidade de deposição de ouro Eficiência catódica de 100%

Espessura do depósito (µm)	Peso		posição A/dm²)		
	g/dm ²	0,2	0,3	0,4	0,5
0,25	0,048	3,44	2,3	1,1	0,7
0,50	0,097	6,9	4,6	2,2	1,3
0,75	0,145	10,3	7,0	3,3	2,0
1,00	0,193	13,7	9,3	4,5	2,6
1,50	0,290	20,6	13,9	6,7	3,9
2,00	0,386	27,5	18,6	8,9	5,2
2,50	0,483	34,4	23,0	11,1	6,5

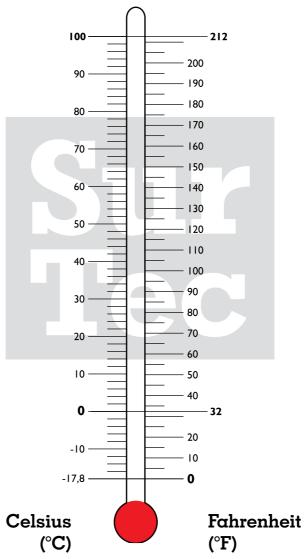
Conversão de espessura da camada em micrometros (µm) para g/m²

	Chumbo	Cromo	Ouro	Cádmio	Cobalto	Cobre	Latão	Níquel	Prata	Zinco	Estanho
l	11,34	6,90	19,30	8,64	8,83	8,93	8,40	8,90	10,50	7,13	7,28
2	22,68	13,80	38,60	17,28	17,66	17,86	16,80	17,80	21,00	14,26	14,56
3	34,02	20,70	57,90	25,92	26,49	26,79	25,20	26,70	31,50	21,89	21,84
4	45,36	27,60	77,20	34,56	35,32	35,72	33,60	35,60	42,00	28,52	29,12
5	56,70	34,50	96,50	43,20	44,15	44,65	42,00	44,50	52,50	35,65	36,40
6	68,04	41,40	115,80	51,84	52,98	53,58	50,40	53,40	63,00	42,78	43,68
7	79,38	48,30	135,10	60,48	61,81	62,51	58,80	62,30	73,50	49,91	50,96
8	90,72	55,20	154,40	69,12	70,64	71,44	67,20	71,20	84,00	57,04	58,24
9	102,06	62,10	173,70	77,76	79,47	80,37	75,60	80,10	94,50	64,17	65,52
10	113,40	69,00	193,00	86,40	88,30	89,30	84,00	89,00	105,00	71,30	72,80
11	124,74	75,90	212,30	95,04	97,13	98,23	92,40	97,90	115,20	78,43	80,08
12	136,08	82,80	231,60	103,68	105,96	107,16	100,80	106,80	126,00	85,56	87,36
13	147,42	89,70	250,90	112,32	114,79	116,09	109,20	115,70	136,50	92,69	94,64
14	158,76	96,60	270,20	120,96	123,62	125,02	117,60	124,60	147,00	99,82	101,92
15	170,10	103,50	289,50	129,60	132,45	133,95	126,00	133,50	157,50	106,95	109,20
16	181,44	110,40	308,80	138,24	141,28	142,88	134,40	142,40	168,00	114,08	116,48
17	192,78	117,30	328,10	146,88	150,11	151,81	142,80	151,30	178,50	121,21	123,76
18	204,12	124,20	347,40	155,52	158,94	160,74	151,20	160,20	189,00	128,34	131,04
19	215,46	131,10	366,70	164,16	167,77	169,67	159,60	169,10	199,50	135,47	138,32
20	226,80	138,00	386,00	172,80	176,60	178,60	168,00	178,00	210,00	142,60	145,60
22	249,48	151,80	424,60	190,08	194,26	196,46	184,80	195,80	231,00	156,86	160,16
24	272,16	165,60	463,20	207,36	211,92	214,32	201,60	213,60	252,00	171,12	174,72
25	283,50	172,50	482,50	216,00	220,75	223,25	210,00	222,50	262,50	178,25	182,00

Conversões fáceis e aproximadas das unidades de espessura de camadas e revestimentos

	Micropolegadas	Milésimos de ("mils")	Polegadas	Angstroms polegada (Å)	Micrometros (µm)	Milímetros
Micropolegada	l	0,001	0,000001	250	0,025	0,000025
Micrometro (µm)	40	0,04	0,00004	10.000	l	0,001
Milésimo de Polegada ("mil")	1.000	l	0,001	250.000	25	0,025
Milímetro	40.000	40	0,04	10	1.000	1

Exemplos da utilização dos fatores:


- 60 micropolegadas equivalem a quantos micrometros? $60 \times 0.025 = 1.5$ micrometros
- 2 micrometros equivalem a quantas micropolegadas?
 2 x 40 = 80 micropolegadas

Conversão de medidas de polegadas em milímetros

Polegadas	Decimais de Polegadas	Milímetros	Polegadas	Decimais de Polegadas	Milímetros
	0.015005	0.207	33	0.515005	12.007
64	0,015625	0,397	17 64	0,515625	13,097
32 3	0,03125	0,794	32 35	0,53125	13,494
3 64	0,046875	1,191	35 64	0,546875	13,891
16 5	0,0625	1,588	16 37	0,5625	14,287
3 64	0,078125	1,985	19 64	0,578125	14,684
3 64	0,09375	2,381	19 32 30	0,59375	15,081
7 64	0,109375	2,778	39 64	0,609375	15,478
8	0,125	3,175	5 02	0,625	15,875
9 64	0,140625	3,572	41 64	0,640625	16,272
5 32	0,15625	3,969	21 (32)	0,65625	16,669
	0,171875	4,366	40	0,671875	17,065
1 6	0,1875	4,762		0,6875	17,462
	0,203125	5,159	40	0,703125	17,859
22	0,21875	5,556	20	0,71875	18,256
64	0,234375	5,593	4	0,734375	18,653
	0,25	6,350		0,75	19,050
	0,265625	6,747	48	0,765625	19,447
20	0,28125	7,144	25	0,78125	19,843
	0,296875	7,541	21	0,796875	20,240
5 64	0,3125	7,937	13 64	0,8125	20,637
	0,328125	8,334	53	0,828125	21,034
11 64	0,34375	8,731	27 64	0,84375	21,430
23 64	0,359375	9,128	55	0,859375	21,827
3 64	0.375	9,525	7 64	0.875	22,225
25 64	0,390625	9,922	57 64	0,890625	22,621
13 64	0,40625	10,319	29 32	0,90625	23,018
27 64	0,421875	10,716	59	0,921875	23,415
7 64	0,4375	11,113	15 64	0,9375	23,812
16 29 64	0,453125	11,510	1B 61 -	0,953125	24,209
15 32	0,46875	11,906	31 64 32 63	0,96875	24,606
32 31 64	0,484375	12,303	32 63 64	0,984375	25,003
	0,404373	12,700	64	1,0	25,400
2	0,0	14,700		1,0	23,400

Escala de conversão de temperatura graus Celsius (°C) em Fahrenheit (°F)

Cálculo de aquecimento de banhos eletrolíticos

Bar	ıho	Peso Específico	Calor Específico		
Ácido Sulfúrico		1,840	0,33		
Água		1,000	1,00		
Cobre Ácido		1,143	0,70		
Cobre Alcalino		1,130	0,83		
Cobre Strike		1,050	0,93		
Cromo		1,274	0,70		
Cromo Duro		1,171	0,80		
Desengraxante		1,075	0,90		
Estanho Ácido		1,075	0,85		
Níquel		1,170	0,74		
Ouro		1,055	0,50		
Prata		1,059	0,90		
Zinco Ácido		1,210	0,75		
Zinco Alcalino		1,143	0,80		

Fórmula:
$$\frac{(v \cdot pe) C (T2-T1)}{t} = Kcal$$

$$\frac{\text{Kcal}}{860} = \text{Kw}$$

Onde: v = volume do banho (em litros)

pe = peso específico C = cαlor específico

T2 = temperatura de operação T1 = temperatura inicial (\pm 20 $^{\circ}$ C) t = tempo de aquecimento em horas

Tabela para cálculo da capacidade de carga em banho de zinco alcalino

Determinação em quilo (aproximado) das cargas com as seguintes características de trabalho:

> tempo de banho = 35 min > corrente elétrica = 300 A > fator de eficiência (fe) = 0,15

Camada >	4	6	8	10	12	14	16
Chapa	15,453	10,302	7,727	6,181	5,151	4,415	3,863
Parafuso	4,868	3,246	2,434	1,947	1,623	1,391	1,217
Parafuso meia rosca	6,297	4,198	3,149	2,519	2,099	1,799	1,574
Tubo	30,907	20,604	15,453	12,363	10,302	8,830	7,727
Porca sextavada	4,327	2,885	2,163	1,731	1,442	1,236	1,082
Arame	7,727	5,154	3,863	3,091	2,576	2,208	1,932

Procedimento:

- 1. Medir a espessura da chapa de fabricação do material (ou diâmetro se for parafuso, ou altura da porca, se for o caso).
- 2. Procurar na tabela acima, a intersecção da camada com o tipo de peça.
- 3. Multiplicar a espessura (medida no item 1) pelo valor encontrado.

O resultado obtido é o valor máximo teórico, em peso aproximado, que pode ser banhado para alcançar a camada requerida, segundo as características pré-estabelecidas acima.

Exemplo:

Parafuso sextavado com rosca total, diâmetro de 12 mm, onde se requeira camada de 12 μ m. Pela intersecção na tabela, tem-se o valor de 1,623, que multiplicado por 12 (diâmetro do parafuso), obtém-se 19,476 kg, que corresponde a quantidade máxima que, teoricamente, pode ser banhada, para se obter o requerido nessas condições de banho.

fe = [área (dm²) \times camada (μ m)] / [corrente (A) \times tempo (min)]

Tabelas para o cálculo das superfícies de cargas para eletrodeposição

Peso de chapas de metais em kg/100 dm²

Espessura em mm	Al	Zn	Fe	Cu/Ni	Latão	Pb
l	2,70	7,18	7,85	8,90	8,50	11,37
2	5,40	14,36	15,70	17,80	17,00	22,74
3	9,10	21,54	23,55	26,70	25,50	34,11
4	10,80	28,72	31,40	35,60	34,00	45,48
5	13,50	35,90	39,25	44,50	42,50	56,85
6	16,20	43,08	47,10	53,40	51,00	68,22
7	18,90	50,26	54,95	62,30	59,50	79,59
8	21,60	57,44	62,80	71,20	68,00	90,96
9	24,30	64,62	70,65	80,10	76,50	102,33

Cálculo de superfície para arruelas

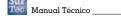
Diâmetro do furo em mm	Diâmetro da arruela em mm	Espessura da arruela em mm	$100~{ m cm}^2 =~{ m kg}$		
2,2	4,5		1,63		
2,8	5,5	0,5	1,45		
3,2	6,0		1,42		
4,3	8,0		1,55		
5,3	10,0	1,0	2,72		
6,4	11,0		3,55		
8,4	15,0	1,5	4,06		
10,5	18,0		4,18		
13,0	20,0	2,0	5,00		
17,0	27,0		5,80		
21,0	33,0	2,5	6,90		
26,0	40,0	4,0	10,00		
33,0	50,0	5,0	12,40		
41,0	58,0	6,0	13,70		

Fatores:

ferro e aço = 1; latão = 1,083; cobre = 1,134; alumínio = 0,433

Tabelas para o cálculo das superfícies de cargas para eletrodeposição

Cálculo para porcas sextavadas com roscas milimétricas


H L	Diâmetro interno da rosca em mm							
Tipo em mm	M2 M3 M4 M5 M6 M8 M10 M12 M16 M20 M24 M30 M36 M42 M4							
	$ m kg/100~dm^2$							
kg	2,20 2,90 3,70 4,60 5,30 7,20 8,80 9,50 12,0 14,0 16,5 24,5 25,6 28,4 34,0							

Fator para: ferro e aço = 1,000; latão = 1,083; cobre = 1,134

Cálculo para parafusos de cabeça sextavada

mento nm							Diâm	etro e	m mm						
Comprimento em mm	M2	М3	M4	M5	M6	M8	M10	M12	M16	M20	M24	M30	M36	M42	M43
							kg/100	0 dm²							
5	2,30	3,10													
	2,10	2,80													
10	2,10	2,90	4,40	5,90											
	1,90	2,80	4,00	5,40											
15		2,70	4,10	5,60	6,70	9,30									
		2,40	3,70	5,10	6,10	9,40					Z				
20		2,70	3,90	5,30	6,40	8,90									
		2,40	3,50	4,80	5,80	8,10									
25		2,50	3,80	5,00	6,20	8,70	11,4	12,4							
		2,20	3,45	4,50	5,60	7,90	10,3	11,3							
30			3,70	4,90	6,10	8,40	11,0	12,7							
40			3,35	4,40 4,80	5,50 5,80	7,60 8,10	10,0	11,5	17,0	21,6					
40			3,25	4,00	5,20	7,30	9.60	11.2	15,5	19,7					
50			3,43	4,30	5,70	7,80	10,4	12,0	16,5	21,0	25,4	34,0			
00					5,20	7,00	9,50	10,9	15,0	19,0	23,0	31,0			
60					0,20	7,00	10,0	11,7	16,2	20,6	25,0	32,4	40,0		
							9,10	10,6	14,7	18,6	22,7	29,5	36,5		
70									15,9	20,4	24,6	32,0	39,5	46,0	
									14,4	18,4	22,2	29,0	35,5	42,0	
80									15,6	20,2	24,2	31,0	39,0	46,0	
									14,2	18,0	22,0	28,0	35,4	41,8	
90											23,7	30,8	38,0	45,0	52,0
											21,5	27,6	34,5	41,0	47,2
100											23,5	30,6	37,6	41,0	50,0
	I		l				l		l		21,0	27,4	34,0	40,0	45,5

Fator para: ferro e aço = 1,000; latão = 1,083; cobre = 1,134

Tabelas para o cálculo das superfícies de cargas para eletrodeposição

Cálculo de superfície por kg de parafusos para madeira (todos os tipos)

			Diâmetro	em mm			
Comprimento em mm	2	3	4	5	6	8	10
				$kg/100\ dm^2$			
10							
	2,30	3,30					
15							
	2,40	3,40	4,40	5,30			
20					6,40		
	2,50	3,50	4,40	5,40	6,70 ◀		
30					6,40	7,80	
		3,55	4,50	5,50	6,70 ◀	8,60 ◀	
40		2.00		- 00	6,50	7,90	7,90
		3,60	4,50	5,60	6,80 ◀	8,70 ◀	9,10 ◀
50		0.70	4.00	F 00	6,60	8,00	8,50
		3,70	4,60	5,60	6,90 ◀	8,80 ◀	9,70 ◀
60			4.00	r co	6,70	8,40	8,90
70			4,60	5,60	7,00 ◀	9,30 ◀	10,2 ◀
70					6,70 7,10 ◀	8,50 9,40 ◄	9,20 10,5 ◀
80					7,10	8,60	9,50
00						9,50 ◀	10,9 ◀
90						8,60	9,80
30						9,50 ◀	11,3 ◀
100						8,70	9,90
-00						9,60 ◀	11,5 ◀
120						=/== 1	10,1
							11,7 ◀

Fator para: latão = 1,083; cobre = 1,138

Tabelas para o cálculo das superfícies de cargas para eletrodeposição

Cálculos para galvanização de rebites meia-cana em tambores rotativos

Rebites tipo meia-cana	kg Fe	kg Cu	Quantidades	A
2 x 10 mm	14,0	14,9	48.200	400
2 x 20 mm	15,2	16,7	28.600	400
2 x 30 mm	15,8	17,4	20.400	400
	-,-	,		
3 x 10 mm	18,5	21,8	28.100 g	400
3 x 20 mm	21,3	25,0	17.700	400
3 x 30 mm	22,5	26,6	12.900 🚜	400
			je c	
4 x 10 mm	23,8	27,0	18.400 🛱	400
4 x 20 mm	28,0	31,8	12.400	400
4 x 30 mm	29,2	32,1	9.000	400
	,_	,-	, u	
5 x 10 mm	28,5	32,3	28.100 17.700 12.900 18.400 12.400 9.000 13.000	400
5 x 20 mm	33,2	37.7	8.900	400
5 x 30 mm	35,6	40,4	6.770	400
6 x 10 mm	32,4	37,3	10.220	400
6 x 20 mm	25,5	29,5	4.810	270
6 x 30 mm	27,7	32,0	3.270	270
			ficie	
7 x 10 mm	25,3	28,4	5.620	270
7 x 20 mm	29,8	33,8	3.980 ਡ੍ਰਿੰ	270
7 x 30 mm	32,5	36,8	3.080 dm ² superficie	270
			lp (
8 x 10 mm	27,2	31,8	4.320 €	270
8 x 20 mm	32,8	37,0	3.210	270
8 x 30 mm	36,3	40,5	2.530	270

Esta tabela mostra a carga ideal conforme o peso para 445 dm^2 , para 270 e 400 Å, respectivamente.

Tabelas para o cálculo das superfícies de cargas para eletrodeposição

Cálculos para parafusos e parafusos auto-atarrachantes em processo rotativo

	Tipo de parafuso	Peso de	Superfície de	Carga d	e 30 kg
	e tamanho	1.000 parafusos	1.000 parafusos	Q uantidade	Superfície
Paraíuso	M 2,6 x 8 M 4 x 15 M 6 x 25 M 8 x 30 M 10 x 40	0,361 kg 2,040 kg 7,120 kg 15,300 kg 34,900 kg	10,3 dm² 40,5 dm² 106 dm² 172 dm² 253 dm²	83.800 14.700 4.220 1.960 860	850 dm ² 440 dm ² 446 dm ² 338 dm ² 217 dm ²
Paratuso auto-atarrachante	2,4 x 7 4 x 15 6 x 15 8 x 30 8 x 50	0,344 kg 1,860 kg 6,700 kg 13,800 kg 19,900 kg	11,4 dm ² 42,1 dm ² 100 dm ² 168 dm ² 190 dm ²	87.000 16.000 4.470 2.170 1.150	990 dm ² 680 dm ² 447 dm ² 365 dm ² 287 dm ²


Esta tabela mostra a quantidade e a superfície para cargas de 30 kg

Tabelas para o cálculo das superfícies de cargas para eletrodeposição

Cálculos para galvanização de rebites cabeça meia-cana

Rebites cabeça tipo meia-cana	de um	tidade 1 carga 0 kg	dm² pa	ície em A/dm² com 10 µm Ni ra uma 400 A para são depositados le 40 kg uma carga em min				
Tamanho	Fe	Cu	Fe	Cu	Fe	Cu	Fe	Cu
2 x 10 mm	135.000	127.000	1.250	1.175	0,32	0,34	155	145
2 x 20 mm	75.500	68.500	1.180	1.070	0,34	0,37	145	136
2 x 30 mm	51.700	46.800	1.130	1.020	0,35	0,39	143	128
3 x 10 mm	60.600	51.500	960	840	0,42	0,48	119	107
3 x 20 mm	33.400	28.300	840	710	0,48	0,56	107	89
3 x 30 mm	23.000	19.400	790	670	0,51	0,6	98	83
4 10	00 500	07.000	7.10	200	0.54			
4 x 10 mm	30.700	27.200	740	660	0,54	0,61	93	82
4 x 20 mm	17.600	15.500	650	575	0,62	0,7	80	72
4 x 30 mm	12.300	11.250	620	550	0,65	0,73	77	68
5 x 10 mm	18.300	16.100	625	550	0.64	0.72	78	68
5 x 20 mm	10.700	9.450	535	470	0,64 0,75	0,73 0,85	67	59
5 x 30 mm	7.600	6.700	500	440	0,73	0,03	62	55
J X JU IIIII	7.000	0.700	300	440	0,0	0,31	04	33
6 x 10 mm	12.900	11.200	560	496	0,71	0,81	70	62
6 x 20 mm	7.550	6.650	480	415	0,83	0,97	60	52
6 x 30 mm	5.350	4.640	435	387	0,92	1,03	54	49
7 x 10 mm	8.900	7.800	460	405	0,87	0,99	57	51
7 x 20 mm	5.350	4.800	405	362	0,99	1,1	51	46
7 x 30 mm	3.800	3.360	370	325	1,08	1,23	47	41
8 x 10 mm	6.470	5.600	443	385	0,9	1,04	56	48
8 x 20 mm	3.910	3.470	366	325	1,09	1,23	46	41
8 x 30 mm	2.820	2.500	335	297	1,19	1,34	42	38

A tabela mostra cargas de 40 kg e 400 A e o tempo em minutos, para a deposição de 10 µm de Ni.

Tabelas para o cálculo das superfícies de cargas para eletrodeposição

Cálculos para transformação de μ m para g/m² ou g/100 dm²

μm	Zinco g/m²	Cádmio g/m²	Níquel g/m²	Cobre g/m²	Prata g/m²
1	7,14	8,64	8,85	8,93	10,5
2	14,28	17,28	17,70	17,86	21,0
3	21,42	25,92	26,55	26,79	31,5
4	28,56	34,56	35,40	35,72	42,0
5	35,70	43,20	44,25	44,65	52,5
6	42,84	51,84	53,10	53,58	63,0
7	49,98	60,48	61,95	62,51	73,5
8	57,12	69,12	70,80	71,44	84,0
9	64,26	77,76	79,65	80,37	94,5
10	71,40	86,40	88,50	89,30	105,0
11	78,54	95,04	97,35	98,23	115,5
12	85,68	103,68	106,20	107,16	126,0
13	92,82	112,32	115,05	116,09	136,5
14	99,96	120,96	122,90	123,02	147,0
15	107,10	129,6	132,75	133,95	157,5
16	114,24	138,24	141,60	142,88	168,0
17	121,38	146,88	150,45	151,81	178,5
18	128,52	155,52	159,30	160,74	189,0
19	135,66	164,16	168,15	169,67	199,5
20	142,80	172,80	177,00	178,60	210,0
25	178,50	216,00	221,25	223,25	262,5
30	214,20	259,20	265,20	267,90	315,0

Não somente a superfície é importante para o cálculo, como também a espessura da camada depositada, a qual representa tempo, produtos químicos, anodos, eletricidade etc.

Tabela de área e peso de parafusos

Cabeça sextavada

Comprimento	Diâmetro (área em dm² por kg de parafusos)									
Com	1/4"	5/16"	3/8"	7/16"	1/2"	5/8"	3/4"	7/8"	1"	
1/2"	13,3	10,4	8,74							
3/4"	13,1	10,4	8,7	7,4	6,6					
<u>l</u> "	12,6	10,9	9,0	7,7	6,8	5,4				
11/2"	12,2	10,6	8,9	7,5	6,6	5,4	4,5	4,0	3,6	
2"	11,5	9,8	8,2	7,1	6,5	5,2	4,1	3,9	3,5	
21/2"	11,0	9,4	7,82	7,0	6,2	5,1	4,0	3,8	3,3	
3"	10,9	9,0	7,5	6,7	5,9	4,9	4,0	3,6	3,2	
31/2"	10,6	8,7	7,3	6,5	5,7	4,8	4,1	3,5	3,2	
4"	10,3	8,5	7,1	6,3	5,5	4,6	3,96	3,4	3,3	

Peso para arames

Gramas por metro linear

		Material				Material				Material	
Diâmetro	Aço doce 7,85 kg/dm³	Cobre 8,9 kg/dm ³	Latão 8,5 kg/dm³	Diâmetro	Aço doce 7,85 kg/dm³	Cobre 8,9 kg/dm ³	Latão 8,5 kg/dm³	Diâmetro	Aço doce 7,85 kg/dm³	Cobre 8,9 kg/dm ³	Latão 8,5 kg/dm³
0,10	0,062	0,070	0,067	0,70	3,020	3,420	3,270	2,90	51,800	58,800	56,100
0,12	0,089	0,101	0,096	0,75	3,470	3,930	3,760	3,00	55,500	62,900	60,100
0,15	0,139	0,157	0,150	0,80	3,950	4,470	4,270	3,10	59,200	67,100	64,100
0,18	0,199	0,226	0,216	0,85	4,450	5,050	4,820	3,20	63,100	71,600	68,400
0,20	0,247	0,28	0,267	0,90	4,990	5,660	5,410	3,40	71,300	80,800	77,200
0,22	0,298	0,338	0,323	0,95	5,560	6,310	6,020	3,50	75,500	85,800	81,800
0,23	0,326	0,370	0,353	1,00	6,170	6,990	6,680	3,80	89,000	101,000	96,400
0,24	0,355	0,402	0,384	1,10	7,460	8,460	8,080	4,00	98,600	111,800	106,800
0,25	0,385	0,437	0,417	1,20	8,880	10,070	9,610	4,20	108,800	123,300	117,800
0,26	0,417	0,472	0,452	1,30	10,420	11,810	11,280	4,50	124,700	141,500	135,100
0,27	0,449	0,509	0,487	1,40	12,080	13,700	13,080	4,60	130,500	147,800	141,300
0,28	0,483	0,548	0,523	1,50	13,870	15,720	15,010	4,80	142,000	161,100	153,800
0,30	0,555	0,629	0,601	1,60	15,780	17,900	17,090	5,00	154,100	174,800	166,900
0,31	0,592	0,671	0,641	1,70	17,820	20,200	19,290	5,50	186,500	211,400	202,000
0,32	0,631	0,716	0,684	1,80	19,980	22,650	21,630	6,00	122,000	252,000	240,000
0,34	0,713	0,808	0,772	1,90	22,300	25,200	24,100	6,50	260,000	295,000	282,000
0,35	0,755	0,856	0,818	2,00	24,700	28,000	26,700	7,00	302,000	342,000	327,000
0,37	0,844	0,957	0,914	2,10	27,200	30,800	29,400	7,50	347,000	393,000	376,000
0,38	0,890	1,010	0,964	2,20	29,800	33,800	32,300	7,60	356,000	404,000	386,000
0,40	0,986	1,120	1,070	2,30	32,600	37,000	35,300	8,00	395,000	447,000	427,000
0,45	1,250	1,420	1,350	2,40	35,500	40,200	38,400	8,20	415,000	470,000	449,000
0,50	1,540	1,750	1,670	2,50	38,500	43,700	41,700	8,80	477,000	541,000	517,000
0,55	1,860	2,110	2,020	2,60	41,700	47,200	45,200	9,00	499,000	566,000	541,000
0,60	2,220	2,520	2,400	2,70	44,900	50,900	48,700	9,40	545,000	618,000	590,000
0,65	2,600	2,950	2,820	2,80	48,300	54,800	52,300	10,00	617,000	699,000	668,000

Tabela de ferros redondos e quadrados

Peso em quilos por metro

Bitolas	Redondos	Quadrados
3/16"	0,140	0,178
1/4"	0,250	0,320
5/16"	0,390	0,495
3/8"	0,560	0,715
7/16"	0,760	0,970
1/2"	0,995	1,270
5/8"	1,555	1,980
3/4"	2,235	2,850
7/8"	3,050	3,880
1"	3,980	5,065
11/8"	5,035	6,410
11/4"	6,215	7,915
13/8"	7,520	9,575
1/2"	8,950	11,400
] 3/4"	12,195	15,525
2"	15,925	20,260
21/4"	20,140	24,640
21/2"	24,860	31,655
3"	35,800	45,580
31/2"	48,725	62,050
4"	63,650	81,050

Tabelas técnicas

Tabela de máxima corrente para banhos

Zinco ácido	0,6 A/L
Zinco alcalino	0,3 A/L
Cobre alcalino	0,5 A/L
Cádmio	0,5 A/L
Níquel	0,6 A/L
Cromo	1,5 A/L
Cromo duro	0,5 A/L

Tabela de volume mínimo de banho a tambor

Zinco		4,0 L/A
Cádmio ou latão		3,0 L/A
Níquel		2,0 L/A

Tabela de coeficientes de dilatação térmica de alguns metais em camadas finas e de alguns substratos (em $10^6/^{\circ}$ C)

Cromo	6,8
Cromo níquel (2080)	13,1
Cobre	16,8
Prata	18,8
Ouro	14,3
Níquel	12,9
Cerâmica ${ m Al_2O_3}$	6,6
Safira sintética	5,4 - 6,2
Cerâmica BeO	6,5 - 7,5
Vidro borosilicato	4,5
Quartzo	0,6
	7,0 - 9,0

__Manual Técnico

Tabela de peso superficial (g/m²), espessura média (μ m) e densidade aparente de camadas de fosfato de zinco

Peso	Espessura	Densidade
23	25	0,92
22	23	0,96
27	17	1,59
25	25	1,00
24	24	1,00
26	19	1,37
35	20	1,75
29	18	1,61
29	14	2,07
34	19	1,79
32	19	1,68
38	23	1,65
22	20	1,10
31	17	1,82
29	18	1,61
26	15	1,73
34	20	1,70
36	21	1,71

Tabela de dureza de metais eletrodepositados (em HV)

Níquel	(tipo Watts)	110 - 250		
	(tipo cloreto	200 - 400		
	(tipo sulfato)	180 - 275		
	(tipo sulfato c/abrilh)	500 - 600		
	(tipo fluorborato)	125 - 300		
	(tipo sulfamato)	125 - 500		
	(brilhante)	400 - 600		
Cobre	(tipo amina)	170 - 200		
	(cianetos)	110 - 160		
	(cianeto c/abrilh)	até 340		
	(fluorboratos)	40 - 80		
	(pirofosfatos)	80 - 250		
	(sulfato)	40 - 100		
	(sulfato c/abrilh)	até 350		

Tabela de volume de ${ m H_2SO_4}$ necessário para reduzir o pH a cada 0,2 pontos (em cc/100 litros)

Madamara andre de all de calcação	Conteúdo de H ₃ BO ₃			
Mudança no valor de pH da solução	34 g/L	40 g/L		
4,6 - 4,4	2,3	3,3		
4,4 - 4,2	1,8	2,6		
4,2 - 4,0	1,4	1,9		
4,0 - 3,8	1,0	1,3		
3,8 - 3,6	0,6	0,8		

Tabela de retenção do material de filtração em micrometros

Eletrólitos galvânicos	2 - 10
Banhos químicos	1 - 5
Fosfatização	20 - 30
Desengraxantes e decapantes	5 - 50
Água e resíduos	10 - 50
Óleos e graxas	2 - 20
Emulsões	5 - 20

Tabela de qualidade mínima de pureza da água em microSiemens por centímetro (µS/cm) para diversos banhos

Água natural	$(250-1000\mu{\rm S/cm})$	desengraxantes, zincagem,
		cobreagem alcalina.
Água desmineraliz	ada (5-100 µS/cm)	lavagem sem manchas, banhos de níquel e
		cobre ácido, deposição de vernizes,
		circuitos impressos.
Água destilada	(menos de 2 μ S/cm)	banhos de metais preciosos, semicondutores.

Tabela de calorias necessárias para evaporação de água

l grama de água consome l caloria para aumentar 1°C, 80 calorias para fundir e 540 para evaporar.

Tabela de dimensões de tambores rotativos

Diâmetro do tambor	Comprimento do tambor	Volume médio de peças (dm²)	Peso máximo em kg	Área ótima em dm²
400 mm	1.600 mm	75	112	1.680
400 mm	1.000 mm	45	68	1.020
400 mm	800 mm	35	52	780
400 mm	600 mm	28	42	630
250 mm	600 mm	12	18	270
250 mm	400 mm	7	11	165
200 mm	400 mm	5	8	120
200 mm	300 mm	4	6	90

(Admitiu-se na tabela acima que as peças tinham uma densidade aparente de 1,5 kg/dm). Para obter o valor exato deve-se determinar esta densidade na prática e multiplicar os valores do peso e área por este valor dividido por 1,5.

Tabela de amperagem para barramentos quadrados e retangulares

Seção da barra	Cobre	Latão	Alumínio	Ferro
1/8" x 1/8"	15	3	11	2
1/8" x1/4"	30	6	22	4
1/8" x 1/2"	60	12	44	8
1/8" x 3/4"	90	18	67	12
1/8" x 1"	120	24	90	16
1/4" x 1/4"	60	12	44	8
1/4" x 1/2"	120	24	89	16
l/4" x 1"	240	48	177	32
1/4" x 11/2"	360	73	266	48
l/4" x 2"	480	97	355	65
1/4" x 21/2"	605	121	444	81
1/4" x 3"	730	145	530	100
1/4" x 31/2"	850	170	620	110
1/4" x 4"	970	190	710	130
3/8" x 3/8"	140	27	100	18
3/8" x 1"	360	70	270	50
3/8" x 11/2"	545	110	400	70
3/8" x 2"	730	145	530	100
3/8" x 21/2"	910	180	670	120
3/8" x 3"	1.100	220	800	145
3/8" x 31/2"	1.270	250	930	170
3/8" x 4"	1.450	290	1.070	190
1/2" x 1/2"	240	50	180	32
1/2" x 1"	480	100	355	65
1/2" x 11/2"	730	145	530	100
1/2" x 2"	970	190	710	130
1/2" x 21/2"	1.210	240	890	160
1/2" x 3"	1.450	290	1.065	190
1/2" x 31/2"	1.690	340	1.240	230
1/2" x 4"	1.935	390	1.420	260
3/4" x 3/4"	540	110	400	70
3/4" x 2"	1.450	290	1.065	190
3/4" x 3"	2.180	435	1.600	290
3/4" x 4"	2.900	580	2.130	390
3/4" x 5"	3.630	730	2.660	480

70

Tabela de amperagem para barramentos redondos

Dimensão	Cobre	Ferro	Latão	Alumínio	Prata	Monel	Bronze Fosforoso
1/16	3	1/2	1/2	2	3	1/8	1
3/32	7	1	l	4	7	1/4	2
1/8	12	2	2	7	13	1/2	3
5/32	19	2	4	12	20	3/4	5
3/16	28	3	6	17	29	1	7
1/4	49	6	10	30	52	2	12
5/16	77	10	15	47	81	3	19
3/8	111	14	22	68	118	4	28
7/16	150	19	30	92	160	6	37
1/2	196	24	39	120	208	8	49
5/8	307	38	61	187	326	12	77
3/4	441	55	88	269	479	18	110
7/8	691	75	120	367	640	24	173
l	785	97	157	479	835	31	198
11/4	1.228	152	246	748	1.304	49	307
1/2	1.764	219	353	1.076	1.916	71	411
13/4	2.404	298	480	1.468	2.560	96	601
2	3.140	380	628	1.916	3.340	126	785

Tabela de aplicações e observações sobre depósitos eletrolíticos

Alumínio	Boas propriedades térmicas; boa resistência ao calor quando difundida no metal base. Usado raramente.
Antimônio	Resistente ao manchamento. Com polimento fica muito atrativo. Para aplicação prática muito quebradiço.
Arsênico	É utilizado oportunamente para fins decorativos.
Bismuto	Às vezes utilizado como proteção à corrosão, com muita raridade.
Bronze	Aspecto decorativo preferencialmente envernizado. Revestimento base para níquel e cromo. Para proteção de peças de aço nos processos de nitretação. Revestimentos brilhantes para utensílios de cozinha (com 40 a 60% de estanho). Não é aconselhado para aplicações exteriores.
Cádmio	Ótima aparência, resistente à corrosão para ferro e aço em interiores. Para chassis de rádios e televisão, peças marítimas e de aviões. Boa soldabilidade.
Cobalto	Raramente usado sozinho, a não ser quando é requerida peça de alta dureza (espelho, refletores). Parecido com níquel, porém, mais caro. Usado muitas vezes junto às outras ligas galvânicas para melhoria de suas propriedades.
Cobre	Aspecto atraente (quando polido e envernizado) e boa resistência à corrosão. Elevada condutibilidade elétrica e calorífica. Como camada base para melhorar aderência de camadas posteriores, como níquel e cromo. Para proteção de partes de peças em tratamentos térmicos. Camada protetora de difusão de hidrogênio. Como "lubrificante" em alguns processos de trefilação.
Chumbo	Resistente aos muitos gases quentes corrosivos, atmosferas e ácidos. Normalmente é mais utilizado no processo a fogo. É usado em equipamentos químicos, acumuladores, parafusos, etc.
Chumbo-Estanho	Melhor proteção e mais duro que o chumbo. Boa estabilidade ao armazenamento. Também usado em peças onde se necessita boa soldabilidade.
Cromo	Tem grande resistência ao desgaste por fricção e à corrosão. Camadas finas após o níquel para melhor durabilidade do brilho. Em peças técnicas como cromo duro pela alta resistência.
Estanho	Resistente à corrosão, aspecto atraente, facilmente soldável, macio e dútil. Utilizado em conservas, certas peças de geladeiras, peças eletrônicas, revestimento de fios de cobre, sempre onde haja necessidade de ótima soldabilidade.
Estanho-Níquel	Boas propriedades decorativas, boa resistência ao manchamento, resistente aos produtos químicos normais e à corrosão marítima. Boa solda. Para aparelhos de cozimento, instrumentos médicos, relógios, bombas, aparelhos químicos.
Estanho-Zinco	Boα resistência à corrosão e boα solda. Utilizado em componentes eletrônicos. Proteção galvânica de peças de aço em contato com alumínio.

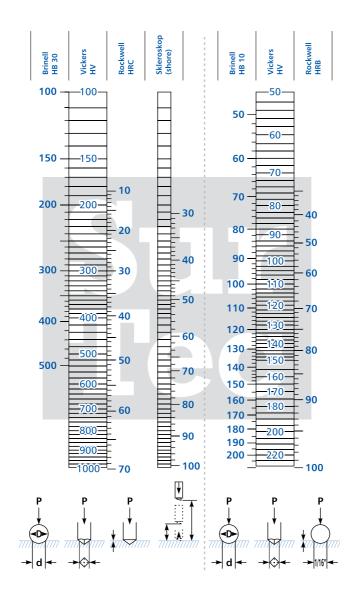
___Manual Técnico

Ferro	Principalmente para aumentar tamanho de peças de ferro e revestir pontas de cobre em ferros de soldagem.
Índio	Resistente ao manchamento, muito dútil. Usado sobre a prata em peças para motores de aviões. Também para melhorar propriedades mecânicas de revestimentos de ligas.
Latão	Aspecto atrativo quando polido e envernizado. Aumenta a aderência de borracha no aço.
Níquel	Muito decorativo. Resiste a muitos meios corrosivos. Pode ser depositado em diversas durezas.
Ouro	Resistente ao manchamento posterior. Também resistente a produtos químicos e à oxidação a altas temperaturas. Ótima reflexão ao calor, condutibilidade elétrica e dutilidade. Usado em jóias, refletores, óculos, contatos elétricos, elementos eletrônicos, peças de computadores, equipamentos especiais de laboratório.
Paládio	Aspecto decorativo, resistente à corrosão. Pode ser usado só ou abaixo de uma camada de rênio para componenetes eletrônicos.
Platina	Aspecto decorativo, resistente à corrosão e ao manchamento. Camadas finíssimas com finalidade decorativas. Para proteção de peças em certos meios corrosivos especiais.
Prata	Aspecto atraente, quando convenientemente protegido. Boas propriedades elétricas. Resistente a muitos produtos químicos. Utilizado em baixelas, panelas, placas, etc., como aspecto decorativo, e em instrumentos médicos, aparelhos químicos, contatos elétricos que necessitam boa condutividade elétrica.
Rênio	Apesar do ponto de fusão alto, inicia a se oxidar a 400 °C. Tem uma má resistência à umidade. Utilizado em aparelhos eletrônicos, como cátodos e outras peças.
Ródio	Brilho muito atraente, resiste ao manchamento e à corrosão. Boa condutibilidade elétrica. Utilizado em jóias, instrumentos musicais, equipamentos especiais de laboratório e de medicina, aparelhos óticos, contatos elétricos, espelhos e refletores.
Zinco	Grande aplicação para proteção catódica de peças de aço. Preço baixo. Parafusos, porcas, pregos, outras peças em geral.
Zinco-Cobalto	Deposita com alta velocidade sobre ferro fundido e aço tratado termicamente. Tem bom desempenho no teste de corrosão "Kesternich" e aceita passivação azul. Muito utilizado em peças de freios.
Zinco-Ferro	De liga muito estável, possue excelente resistência à corrosão branca e ótimo aspecto com cromato preto. É a liga mais solicitada do mercado e não provoca reações alérgicas, tais como dermatite.
Zinco-Níquel	Tem o melhor desempenho à corrosão vermelha, quando comparado com outras ligas de zinco. Seu depósito é mais duro e de composição estável. Suporta tratamento térmico.

Tabela de unidades de vácuo

	bar	Milibar (M bar)	Pascal Pa (Nxm ⁻²)	Micrometro (µm)	Torr (mmHg)	Atmosfera (atm)
l bar	1	103	105	7.5×10^{-5}	750	0,9869
l M bar	10-3	1	102	7.5×10^{2}	0,750	$0,9869 \times 10^{-3}$
l Pa	10-5	10-2	1	7,5	0.750×10^{-2}	$0,9869 \times 10^{-5}$
lμ	$1,33 \times 10^{-6}$	$1,333 \times 10^{-3}$	0,1333	l	10 ⁻³	$1,316 \times 10^{-6}$
l Torr	$1,33322 \times 10^{-3}$	1,33322	$1,33322 \times 10^{2}$	10 ³	1	$1,316 \times 10^{-3}$
l atm	1,01325	$1,01325 \times 10^{3}$	$1,01325 \times 10^{5}$	7.6×10^{5}	760	l

Equivalência de unidades de dureza


Bri	nell		stência à t em kg/mm			Rockwell			(Shore)	OHS
Diâmetro da massa em mm	${}^{10}{ m H}_{ m B}^{3000}$	$\frac{A_{\rm Go}}{{}_{10}{ m H}_{ m B}^{3000}}$ - 0,36)	A_{Co} , C_{r} , M_{n} C_{r} - M_{n} $C_{r_{0}}$	$\begin{array}{c} A_{C0}, N_{\rm i} \\ C_{\rm r} - N_{\rm i}, C_{\rm r} - M_{\rm o} \\ (_{10}H_{\rm 3000} - 0,34) \end{array}$	A (Ra)	В (Rв)	C (Rc) Brate	Vickers	Escleroscó pica (Shore)	Escala de MOHS
(2,00)	(946)	340,6	331,1	321,6						
(2,05)	(898)	323,3	314,3	305,3						
(2,10)	(857)	308,5	300,0	291,4						
(2,15)	(817)	294,1	286,0	277,8						
(2,20)	(780)	280,8	273,0	265,2			70	1.150	106	8,5
(2,25)	(745)	268,2	260,8	253,3	84,1		68	1.050	100	
(2,30)	(712)	256,3	249,2	242,1			66	960	95	
(2,35)	(682)	245,5	238,7	231,9	82,2		64	885	91	8,0
(2,40)	(653)	235,1	228,6	222,0	81,2		62	820	87	
(2,45)	(627)	225,7	219,5	213,2	80,5		60	765	84	
(2,50)	(601)	216,4	210,4	204,3	80,2		58	717	81	
2,55	578	208,1	202,3	196,5	79,4		57	675	78	7,5
2,60	555	199,8	194,3	188,7	78,6	(120)	55	633	75	
2,65	534	192,2	186,9	181,6	77,9	(119)	53	598	72	
2,70	514	185,0	179,9	174,8	77,0	(119)	52	567	70	
2,75	495	178,2	173,3	168,3	76,5	(117)	50	540	67	
2,80	477	171,7	167,0	162,2	75,7	(117)	49	515	65	7,0
2,85	461	166,0	161,4	156,7	75,0	(116)	47	494	63	
2,90	444	159,8	155,4	151,0	74,2	(115)	46	472	61	
2,95	429	154,4	150,2	145,9	73,4	(115)	45	454	59	
3,00	415	149,4	145,3	141,1	72,8	(114)	44	437	57	
3,05	401	144,4	140,4	136,3	72,0	(113)	42	420	55	
3,10	388	139,7	135,8	131,9	71,4	(112)	41	404	54	
3,15	375	135,0	131,3	127,5	70,6	(112)	40	389	52	
3,20	363	130,7	127,1	123,4	70,0	(110)	38	375	51	

Bri	nell	Resistência à tração em kg/mm²			Rockwell			(Shore)	SHO	
Diâmetro da massa em mm	$_{10}\mathbf{H}_{\mathrm{B}}^{3000}$	$\frac{A_{CO}}{M_{B}^{3000}}$ - 0,36)	Aço, Cr, Mn Cr - Mn (₁₀ H ₃₀₀₀ - 0,35)	$\begin{array}{c} A_{C0}, N_{\rm i} \\ C_{\rm r} - N_{\rm i}, C_{\rm r} - M_{\rm o} \\ (_{10}^{}H_{3000}^{3000} - 0,34) \end{array}$	A (Ra)	B (RB)	C (Rc) Brate	Vickers	Escleroscó pica (Shore)	Escala de MOHS
3,25	352	126,7	123,2	119,7	69,3	(110)	37	363	49	
3,30	341	122,8	119,4	115,9	68,7	(109)	36	350	48	
3,35	331	119,2	115,9	112,5	68,1	(109)	35	339	46	
3,40	321	115,6	112,4	109,1	67,5	(108)	34	327	45	
3,45	311	112,0	108,9	105,7	66,9	(108)	33	316	44	
3,50	302	108,7	105,7	102,7	66,3	(107)	32	305	43	
3,55	293	105,5	102,6	99,6	65,7	(106)	31	296	42	
3,60	285	102,6	99,8	96,9	65,3	(105)	30	287	40	
3,65	277	99,7	97,0	94,2	64,6	(104)	29	279	39	
3,70	269	96,9	94,2	91,5	64,1	(104)	28	270	38	
3,75	262	94,3	91,7	89,1	63,6	(103)	26	263	37	
3,80	255	91,8	89,3	86,7	63,0	(102)	25	256	37	
3,85	248	89,3	86,8	84,3	62,5	(102)	24	248	36	
3,90	241	86,8	84,4	81,9	61,8	100	23	241	35	
3,95	235	84,6	82,3	79,9	61,4	99	22	235	34	
4,00	229	82,4	80,2	77,9	60,8	98	21	229	33	
4,05	223	80,3	78,0	75,8		97	20	223	32	
4,10	217	78,1	76,0	73,8		96	(18)	217	31	
4,15	212	76,3	74,2	72,1		96	(17)	212	31	
4,20	207	74,5	72,5	70,4		95	(16)	207	30	
4,25	202	72,7	70,7	68,7		94	(15)	202	30	
4,30	197	70,9	69,0	67,0		93	(13)	197	29	
4,35	192	69,1	67,2	65,3		92	(12)	192	28	
4,40	187	67,3	65,5	63,6		91	(10)	187	28	
4,45	183	65,9	64,1	62,2		90	(9)	183	27	
4,50	179	64,4	62,6	60,9		89	(8)	179	27	
4,55	174	62,6	61,0	59,2		88	(7)	174	26	
4,60	170	61,2	59,5	57,8		87	(6)	170	26	
4,65	166	59,8	58,1	56,4		86	(4)	166	25	
4,70	163	58,7	57,1	55,4		85	(3)	163	25	
4,75	159	57,2	55,7	54,1		84	(2)	159	24	

Bri	nell	Resi	stência à t em kg/mm	ração 1 ²		Rockwell			Shore)	HS
Diâmetro da massa em mm	$_{10}\mathrm{H}_{\mathrm{B}}^{3000}$	Aço carbono (₁₀ H _B 3000 - 0,36)	Aço, Cr, Mn Cr - Mn (₁₀ H ₃₀₀₀ - 0,35)	$\frac{A_{C0}, N_{i}}{C_{r} - N_{i}, C_{r} - M_{o}}$ $\binom{1}{10}H_{3000} - 0,34$	A (Ra)	B (RB)	C (Rc) Brate	Vickers	Escleroscó pica (Shore)	Escala de MOHS
4,80	156	56,2	54,6	53,0		83	(1)	156	24	
4,85	153	55,1	53,6	52,0		82		153	23	
4,90	149	53,6	52,2	50,7		81		149	23	
4,95	146	52,6	51,1	49,6		80		146	22	
5,00	143	51,5	50,1	48,6		79		143	22	
5,05	140	50,4	49,0	47,6		78		140	21	
5,10	137	49,3	48,0	46,6		77		137	21	
5,15	134	48,2	46,9	45,6		76		134	21	
5,20	131	47,2	45,9	44,5		74		131	20	
5,25	128	46,1	44,8	43,5		73		128	20	
5,30	126	45,4	44,1	42,8		72		126		
5,35	124	44,6	43,4	42,2		71		124		
5,40	121	43,6	42,4	41,1		70		121		
5,45	118	42,5	41,3	40,1		69		118		
5,50	116	41,8	40,6	39,4		68		116		
5,55	114	41,0	39,9	38,8		67		114		
5,60	112	40,3	39,2	38,0		66		112		
5,65	109	39,2	38,2	37,1		65		109		
5,70	107	38,5	37,5	36,4		64		107		
5,75	105	37,8	36,8	35,7		62		105		
5,80	103	37,1	36,1	35,0		61		103		
5,85	101	36,4	35,4	34,3		60		101		
5,90	99	35,6	34,7	33,7		59		99		
5,95	97	34,9	34,0	33,0		57		97		
6,00	95	34,2	33,3	32,3		56		95		

Nota: Os valores entre parenteses () são apenas comparativos.

Escala de durezas

Tabela de resistência química de materiais

A= Excelente B= Bom
C= Fraco D= Não recomendado

	0	- rrac	O	D-	- Nao r	ecome	ildudo
Material de contato Produto químico	Inox 304	Inox 316	Titânio	PVC tipo 1	Teflon	Polipropileno	Neoprene
Cloreto de amônia	A	C	D	A	A	A	A
Ácido bórico	A	A	A	A	A	A	A
Ácido crômico (5%)	A	A	A	A	-	A	D
Ácido crômico (10%)	В	-	A	A	A	A	D
Ácido crômico (30%)	В	-	A	A	A	A	D
Ácido crômico (50%)	В	В	A	В	A	В	D
Cianeto de cobre	A	A	A	A	A	A	A
Sulfato de cobre (5%)	A	A	A	A	A	A	A
Sulfato de cobre (100%)	В	-	Α	A	A	A	A
Tingidores	A	A	-	-	ı	-	С
Ácido clorídrico (20%)	D	D	С	A	A	A	С
Ácido clorídrico (37%)	D	D	С	A	A	A	С
Ácido clorídrico (100%)	D	D	D	A	A	-	С
Peróxido de hidrogênio (30%)	В	В	В	A	A	В	D
Vernizes	A	A	-	ı	-	A	D
Cloreto de níquel	A	В	A	A	A	A	A
Sulfato de níquel	A	В	A	A	A	A	A
Ácido nítrico (solução 10%)	A	A	A	A	A	A	D
Ácido nítrico (solução 20%)	A	A	A	A	A	A	D
Ácido nítrico (solução 50%)	A	A	A	A	A	D	D
Ácido nítrico (concentrado)	D	В	A	D	A	D	D
Ácido fosfórico (até 40%)	В	A	A	A	A	A	D
Ácido fosfórico (de 40 α 100%)	C	В	В	A	A	A	D
Banho de latão (40 °C)	-	A	A	A	A	A	A
Banho de cádmio (30 °C)	-	A	A	A	A	A	A
Banho de cromo convencional (55 °C)	-	С	A	A	A	A	D
Banho de cromo fluorsilicato (35 °C)	-	С	С	A	A	A	D
Banho de cromo fluoreto (55 °C)	-	D	С	A	A	A	D
Cobre alcalino strike (50 °C)	-	-	A	-	A	-	A
Cobre alcalino Rochelle (65 °C)	-	A	A	D	A	A	В
Cobre alcalino alta eficiência (80 °C)	-	A	A	D	A	A	В
Cobre ácido sulfato (28 °C)	-	D	A	A	A	A	A

Tabela de resistência química de materiais

A= Excelente B= Bom
C= Fraco D= Não recomendado

Material de contato Produto químico	Inox 304	Inox 316	Titânio	PVC tipo 1	Teflon	Polipropileno	Neoprene
Cobre químico (60 °C)	-	-	-	A	A	A	D
Níquel Watts (45 a 70 °C)	-	С	A	D	A	A	A
Níquel Woods (alto cloreto - 55 a 60 °C)	-	С	A	D	A	A	В
Níquel fluoborato (30 a 75 °C)	-	С	D	D	A	A	С
Níquel sulfamato (35 a 60 °C)	-	С	A	A	A	A	A
Níquel químico (95 °C)	-	-	-	D	A	D	D
Zinco ácido cloreto (até 60 °C)	-	D	A	A	A	A	A
Zinco ácido sulfato (até 65 °C)	-	С	A	D	A	A	В
Zinco alcalino	-	-	A	A	A	A	A
Hidróxido de potássio (50%)	В	В	С	A	A	A	A
Inibidores de corrosão	A	-	-	_	-	A	С
Bisulfito de sódio	A	-	A	A	A	A	A
Cianeto de sódio	A	-	A	A	A	A	A
Hidrosulfito de sódio		-	_	С	A	-	A
Hidróxido de sódio (20%)	A	A	A	A	A	A	В
Hidróxido de sódio (50%)	A	В	A	A	A	A	С
Hidróxido de sódio (80%)	A	D	A	A	A	A	С
Hipoclorito de sódio (até 20%)	C	C	A	A	A	D	D
Hipoclorito de sódio	-	A	A	A	A	A	A
Ácido sulfúrico (até 10%)	D	С	A	A	A	A	D
Ácido sulfúrico (de 10 α 75%)	D	D	С	A	A	A	D
Ácido sulfúrico (de 75 α 100%)	-	D	D	В	A	В	D
Água destilada	A	A	•	A	A	A	В
Água potável	A	A	•	A	A	A	В
Cloreto de zinco	D	В	A	A	A	A	A
Sulfato de zinco	A	A	A	С	A	A	A

Tratamento de efluentes Limite de emissões

Lei Estadual 997/76, Decreto 8468 de 31/05/1976 - São Paulo Dispõe sobre o controle da poluição do meio ambiente

Parâmetros	Artigo 18 (mg/L)	Artigo 19-A (mg/L)
рH	5,0 α 9,0	6,0 α 10,0
Temperatura	40,0 °C	40,0 °C
Resíduos sedimentáveis	1,0	20,0
Óleos e graxas	100,0	150,0
DBO 5 dias	60,0	- x -
Arsênio	0,2	1,5 #
Bário	5,0	- x -
Boro	5,0	- x -
Cádmio	0,2	1,5 #
Chumbo	0,5	1,5 #
Cianeto	0,2	0,2
Cobre	1,0	1,5 #
Cromo hexavalente	0,1	1,5
Cromo total	5,0	5,0 #
Estanho	4,0	4,0 #
Ferro solúvel (Fe ²⁺)	15,0	15,0
Fluoretos	10,0	10,0
Fenol	0,5	5,0
Manganês solúvel (Mn ²⁺)	1,0	- x -
Mercúrio	0,01	1,5 #
Níquel	2,0	2,0 #
Prata	0,02	1,5 #
Selênio	0,02	1,5 #
Sulfato	- x -	1.000,0
Sulfeto	- x -	1,0
Zinco	5,0	5,0 #

^{# -} A concentração máxima do conjunto de elementos grafados sob este índice deverá ser < ou = α 5,0 mg/L

Artigo 18 — Os efluentes de qualquer fonte poluidora somente poderão ser lançados, direta ou indiretamente, nas coleções de água (rio, córrego, riacho etc.).

Artigo 19-A — Os efluentes de qualquer fonte poluidora somente poderão ser lançados em sistema de esgotos.

Solubilidade de metais em água

Concentração do metal em solução, após precipitação

рН	Ferro (mg/L)	Níquel (mg/L)	Cromo (mg/L)	Zinco (mg/L)	Cádmio (mg/L)	Cobre (mg/L)
6,5	0,8	19,2	17,8	18,5	19,2	11,0
7,0	0,4	18,9	13,7	17,8	18,4	5,8
8,0	0	10,8	7,1	9,1	15,2	2,4
8,5	0	2,3	5,0	1,6	4,8	1,7
9,0	0	0,6	3,4	1,5	0,9	1,2
10,0	0	0	0,3	8,4	0	0,4

Tabela de cálculo para economia de água nos tanques de lavagem

Cálculo de "Q" (vazão de água de lavagem após banho de níquel) com e sem tanque de recuperação

Exemplo	Sem tanque de recuperação	Com tanque de recuperação
Com 1 tanque de lavagem	$T = \frac{82.000}{150} = 547$	$T = \frac{8.200}{150} = 55$
	Q = 547 × 10 Q = 5470 L/h	$Q = 55 \times 10$ Q = 550 L/h
Com 2 tanques de lavagem	$T^2 = 547 \text{ L/h}$ $T = 23.4$ $Q = 23.4 \times 10$ $Q = 234 \text{ L/h}$	$T^{2} = 55 \text{ L/h}$ $T = 7.5$ $Q = 7.5 \times 10$ $Q = 75 \text{ L/h}$
Com 3 tanques de lavagem	$T^3 = 547 L/h$ T = 8.2 $Q = 8.2 \times 10$ Q = 82 L/h	$T^3 = 55 \text{ L/h}$ T = 3.8 $Q = 3.8 \times 10$ Q = 38 L/h
Com 4 tanques de lavagem	$T^4 = 547 L/h$ T = 4.8 Q = 48 L/h	$T^4 = 55 L/h$ T = 2.7 Q = 27 L/h
Com 8 tanques de lavagem	$T^8 = 547$ $T = 2,2$ $Q = 22 L/h$	$T^8 = 55$ T = 1.6 Q = 16 L/h

Tabela de concentração máxima em banhos de lavagem

Metais Cianeto	10 - 20 mg/L 10 - 20 mg/L
Ácido crô	16 mg/L
Álcαlis	 100 mg/L
Ácidos	 $100~\mathrm{mg/L}$

Coleta e preservação de amostras de água para análise laboratorial

Analito	Frasco (V=1 litro)	Preservação
pH, sulfato, fluoreto, Cr ⁶⁺	Vidro	Nenhuma
Cianeto	Plástico	Hidróxido de sódio sólido (lentilha ou escama) até pH > 12
DB0	Vidro	Frasco cheio até a boca refrigeração 4 °C
DQO	Vidro	Ácido sulfúrico até p ${ m H}<2$
Óleos e graxas/fenol	Vidro	Ácido clorídrico (muriático) até p ${ m H} < 2$
Metais/sílica	Plástico	Ácido nítrico até p ${ m H} < 2$
Resíduos gravimétricos	Plástico	Refrigeração 4 °C
Resíduos sedimentáveis	Plástico	Nenhuma
Mercúrio	Plástico	$0.5 \text{ g/L} \text{ de } \text{K}_2\text{Cr}_2\text{O}_7 \text{ e } 50 \text{ mL/L} \text{ de HNO}_3 \text{ PA}$
Sulfeto	Vidro	Frasco cheio até a boca. 3 mL de acetato de zinco 2 N, refrigerar, pH 6 a 9
Gás carbônico (CO ₂)	Vidro	Frasco cheio até a boca

Extraído do original "Guia de Preservação e Armazenamento de Amostras" editado pela CETESB.

Testes qualitativos em efluentes industriais

Determinação de cianetos (< 1 mg/L)

- 1. Pipetar 10 mL da amostra em um tubo de 25 mL.
- 2. Adicionar 1 mL de tampão de acetato.
- 3. Adicionar 1 mL de solução de cloramina-T.
- 4. Tampar e misturar duas vezes por inversão.
- 5. Deixar descansar exatamente por 2 minutos.
- 6. Adicionar 5 mL de reagente piridina-ácido barbitúrico.
- 7. Tampar, misturar fortemente e deixar descansar por exatamente 8 minutos.
- 8. Se o teste apresentar coloração rosa, o efluente ainda apresenta traços de cianeto

Tampão acetato:

Solução 82% em água, ajustar o pH em 4,5 com ácido acético glacial.

Cloramina T:

Solução a 1% em água.

Piridina-ácido harbitúrico:

Preparar uma pasta com 15 g de ácido barbitúrico em água.

Adicionar 75 mL de piridina e misturar bem. Adicionar 15 mL de HCl concentrado. Deixar resfriar e diluir a 250 mL com água. Homogeneizar bem até total dissolução do pó. Estável por 6 meses

Limite de detecção:

0,001 mg/L

Observação:

Os reagentes acima devem ser preservados sob refrigeração e em frasco âmbar.

Estes testes apresentam resultados meramente qualitativos.

Testes qualitativos em efluentes industriais

Determinação de cromo hexavalente

Tubos	Concentração do Padrão mg/L	Volume (mL) do Padrão 7,5 mg/L	Volume (mL) de άguα
1	Branco	_	15,00
2	0,50	1,00	14,00
3	1,00	2,00	13,00
4	1,50	3,00	12,00
5	2,00	4,00	11,00
6		15 mL amostra	_

Em cada tubo:

- 1. Adicionar 1 mL de H₂SO₄ 6 N e agitar.
- 2. Adicionar 1 mL de solução reagente de difenilcarbazida, agitar e aguardar 10 minutos.
- 3. Comparar a cor resultante no tubo contendo o efluente (amostra) com a dos padrões.

Difenilcarbazida:

Dissolver 0,25 g de difenilcarbazida em 50 mL de acetona e avolumar para 100 mL com água.

Ácido sulfúrico 6 N:

Diluir 167 mL de H_2SO_4 concentrado em água e avolumar para 1.000 mL.

Solução padrão de cromo hexavalente com 7,50 mg/L

Limite de detecção:

0,l mg/L

Observação:

Os reagentes acima devem ser preservados sob refrigeração e em frasco âmbar.

Estes testes apresentam resultados meramente qualitativos.

Determinação de sulfatos Cálculo estequiométrico

Determinação de sulfatos

Tubos	Concentração do Padrão mg/L	Volume (mL) do Padrão 1,0 mg/L	Volume (mL) de águα
l	100	1,00	9,00
2	200	2,00	8,00
3	300	3,00	7,00
4	400	4,00	6,00
5	500	5,00	5,00
6	1.000	10,00	0,00
7	-	10 mL amostra	-

Em cada tubo:

- 1. Adicionar 1 mL de solução de cloreto de bário a 10% e agitar.
- 2. Comparar a turvação após 1 minuto de reação.

Solução padrão de 1,00 g/L de sulfato Solução de cloreto de bário a 10%

Limite de detecção:

0,10 mg/L

Cálculo estequiométrico para correção de sulfatos em efluentes galvânicos

$$SO_4^{2-} + B\alpha Cl_2$$
 \longrightarrow $B\alpha SO_4$

Cálculo:
$$M = \frac{C \times 207,34}{96} = C \times 2,16$$

Multiplicar o resultado de cloreto de bário encontrado pelo volume de efluente da estação de tratamento Onde: M = Massa de cloreto de bário por litro de efluente

C = Concentração de sulfato no efluente em q/L

Estes testes apresentam resultados meramente qualitativos.

Determinação da dureza da água

- Tomar 200 mL da água a ser analisada, adicionar 10 mL de solução tampão pH 10 e uma pitada de indicador preto de Eriocromo (facultativo a adição de formaldeído a 10%)
- Titular com EDTA 0,1 M até transformação de violeta para azul.

mL EDTA 0,1 M gastos \times 50 = mg/L CaCO $_3$ 10 mg CaCO $_3$ = 1 graus Franceses (°fH)

máximo para produção galvânica 30 a 35 °fH

Presença de cromo hexavalente em filme de cromato trivalente

A - Preparação dos reagentes

Reagente 1

- 1. Em béquer de 1.000 mL, adicionar 250 mL de água destilada.
- 2. Adicionar 700 mL de ácido fosfórico (87%) P.A. sob leve agitação.
- 3. Avolumar para 1.000 mL com água destilada homogeneizando a solução.

Reagente 2

- 1. Em béquer de 200 mL, adicionar 100 mL de acetona P.A.
- 2. Adicionar 1,0 g de 1,5-difenilcarbazida P.A. e agitar até total dissolução.
- 3. Adicionar algumas gotas de ácido acético P.A. concentrado e agitar.
- 4. Estocar em frasco âmbar em geladeira por no máximo uma semana.

B - Ensaio qualitativo

- Selecionar a peça a ser ensaiada e calcular a área aproximada em cm². Caso a peça seja pequena, utilizar quantidade necessária para atingir cerca de 50 cm². Caso seja maior, adaptar os volumes de béquer, água, diluição e reagentes ao valor da área nas etapas seguintes.
- Aquecer até ebulição o volume de água destilada suficiente para cobrir a peça em um béquer de volume adequado ao tamanho da mesma. Manter em ebulição por 10 minutos cobrindo com vidro de relógio.
- Colocar α(s) peça(s) na água destilada aquecida e manter em ebulição por 10 minutos cobrindo com vidro de relógio.
- 4. Remover α(s) peçα(s) da água quente lavando-α(s) com água destilada dentro do béquer aberto e mantê-lo em aquecimento até reduzir o volume, o qual deverá ficar abaixo do volume da diluição que será preparada (de 50 mL ou conforme a área da peça).
- 5. Deixar esfriar até temperatura ambiente e transferir analiticamente para uma proveta com tampa ou para um balão volumétrico. O volume deve ser o mais próximo possível do valor da área da peça, por exemplo, se a área é de aproximadamente 50 cm², usar um balão de 50 mL.
- Adicionar nesta diluição, 1,0 mL do reagente 1 e 1,0 mL do reagente 2, lembrando que se a área da peça for diferente de 50 cm², a adição dos reagentes deverá ser proporcional.
- 7. Avolumar com água destilada, homogeneizar bem a solução e deixar em repouso por

10 minutos. Observar a coloração formada que deverá ser incolor ou levemente rosa e, comparada ao padrão contendo 0,1 µq de cromo VI, deve ser menos intensa.

C - Preparação do padrão com 0,1 μ g de cromo VI

- Pesar 0,113 g de dicromato de potássio P.A. em balança analítica e dissolver. Transferir para balão volumétrico de 100 mL, avolumar com água destilada e homogeneizar.
- Desta primeira solução, pipetar 0,25 mL e transferir para um balão volumétrico de 100 mL. Avolumar com água destilada e homogeneizar.
- Desta segunda solução, pipetar 1,0 mL e transferir para um balão de 100 mL. Avolumar com água destilada e homogeneizar.
- 4. Nesta terceira solução adicionar 1,0 mL do reagente 1 e 1,0 mL do reagente 2.
- 5. A solução deve apresentar coloração levemente rosa, visível com fundo branco.

D - Ensaio quantitativo

90

- Selecionar a peça a ser ensaiada e de acordo com sua área, que neste caso deve ser exata, adaptar os volumes de béquer, água e diluição ao valor da área nas etapas sequintes.
- 2. Proceder como descrito no Ensaio Qualitativo da etapa 2 até a 5.
- Após a transferência para o balão volumétrico, avolumar com água destilada e homogeneizar bem a solução. O ensaio quantitativo é feito sem a adição dos reagentes 1 e 2.
- Pipetar uma alíquota de 2,0 mL desta diluição e transferir para a cubeta LCK 313 (específica para análises de cromo no espectrofotômetro de UV-VIS Dr. Lange Modelo: Lasa 100).
- 5. Fechar com a tampa laranja do kit LCK 313 (que contêm o reagente ideal para análise de cromo VI) e agitar por 2 minutos.
- 6. Introduzir a cubeta no local indicado do espectrofotômetro de UV-VIS até que ela encaixe emitindo um sinal sonoro. Em seguida o equipamento realiza a identificação da cubeta que é específica para cromo hexavalente, através de movimento circular (leitura do código de barra), e será obtida a leitura da mesma. O resultado é apresentado em mg/L.
- 7. Cálculo: mg/L de cromo $VI \times volume$ da diluição em L = mg de cromo VI

$$\frac{\mathrm{mg\ de\ cromo\ VI}}{\mathrm{área\ em\ cm^2}} \;\; \mathrm{x} \; \frac{1000\,\mu\mathrm{g}}{1\;\mathrm{mg}} \; = \; \mu\mathrm{g/cm^2\ de\ cromo\ VI}$$

Observação: É possível realizar os dois ensaios com a mesma peça, fazendo primeiramente o ensaio quantitativo e depois o ensaio qualitativo, adicionando os reagentes 1 e 2 na diluição.

Controle de aspecto em cromatizante azul trivalente

Montagem	:		_ % Vol
TT		10/	

pH : 1,8 (ajustar com ácido nítrico)

Tempo de imersão : _____s
Tempo de transferência : _____s

Dosagem por controle de aspecto das peças:

A cor iridescente do filme de passivação de cromatos é uma indicação de sua espessura, sendo portanto uma excelente referência para ajuste das condições otimizadas de processo.

Coloque uma peça inclinada sobre uma folha de papel em branco, e incline em um ânqulo conforme desenho ao lado.

Ajuste a solução cromatizante de acordo com o efeito de cor descrito na tabela abaixo

Cor Iridescente	Causa	Ações
Dourado	Filme de cromato muito fino	Aumentar a concentração e o tempo de imersão
Dourado-avermelhado	Filme de cromato fino	Aumentar a concentração
Azul-avermelhado	Filme de cromato fino	Pequeno aumento da concentração ou do tempo de imersão
Azul	Cromatização ótima	Nenhuma correção
Azul-esverdeado	Filme de cromato fino	Pequeno aumento do tempo de imersão
Esverdeado	Leve excesso dα cromatização	Reduzir o tempo de imersão; Imediato: O valor de pH pode ser reduzido temporariamente (mas não abaixo de 1,65) até a redução da concentração pelo consumo. Diluir o banho.
Amarelo-esverdeado	Forte excesso de cromatização	Diluir o banho

Importante: Atenção para a diferença entre o dourado e a cor amarela, portanto observe as partes muito cuidadosamente em cada caso.

Ajuste de pH de solução cromatizante azul trivalente

pH desejado	1,6	1,7	1,8	1,9	2,0	2,1	2,2
pH medido		Quantidad	e de NaHCO	3 em quilos p	or 1.000 litros	s de banho	
1,0	6,29	6,72	7,07	7,34	7,56	7,73	7,87
1,1	4,56	5,00	5,34	5,62	5,83	6,01	6,14
1,2	3,19	3,62	3,97	4,24	4,46	4,63	4,77
1,3	2,10	2,53	2,88	3,15	3,37	3,54	3,68
1,4	1,23	1,67	2,01	2,29	2,50	2,68	2,81
1,5	0,55	0,98	1,33	1,60	1,82	1,99	2,13
1,6		0,43	0,78	1,05	1,27	1,44	1,58
1,7	0,46		0,34	0,62	0,84	1,01	1,15
1,8	0,83	0,37		0,27	0,49	0,66	0,80
1,9	1,12	0,66	0,29		0,22	0,39	0,53
2,0	1,35	0,89	0,52	0,23		0,17	0,31
2,1	្ន 1,54	1,08	0,71	0,42	0,18		0,14
2,2	1,54 1,68	1,22	0,85	0,56	0,33	0,15	
2,3	8 1,80	1,34	0,97	0,68	0,45	0,26	0,12
2,4	1,89 1,97 2.02	1,43	1,06	0,77	0,54	0,35	0,21
2,5	1,97	1,50	1,14	0,84	0,61	0,43	0,28
2,6	2,02	1,56	1,19	0,90	0,67	0,49	0,34
2,7	2,07 2,11	1,61	1,24	0,95	0,72	0,53	0,39
2,8	2,11	1,64	1,28	0,99	0,75	0,57	0,42
2,9	2,14	1,67	1,31	1,01	0,78	0,60	0,45
3,0	2,16	1,70	1,33	1,04	0,81	0,62	0,48
3,1	2,16 2,18	1,72	1,35	1,06	0,82	0,64	0,49
3,2	2 ,19	1,73	1,36	1,07	0,84	0,65	0,51
3,3	2,20	1,74	1,37	1,08	0,85	0,67	0,52
3,4	2,19 2,20 2,21 2,22	1,75	1,38	1,09	0,86	0,68	0,53
3,5		1,76	1,39	1,10	0,87	0,68	0,54
3,6	2,23	1,76	1,40	1,10	0,87	0,69	0,54
3,7	2,23	1,77	1,40	1,11	0,88	0,69	0,55
3,8	2,23	1,77	1,40	1,11	0,88	0,70	0,55
3,9	2,24	1,78	1,41	1,12	0,88	0,70	0,55
4,0	2,24	1,78	1,41	1,12	0,89	0,70	0,56

Instalação da agitação a ar

É surpreendente como a agitação a ar é importante em alguns processos galvânicos, principalmente para banhos de cobre ácido, níquel brilhante, zinco ácido e tanques de lavagens.

Imaginem uma peça sendo cobreada numa solução de cobre ácido estagnada, sem qualquer movimentação. Imediatamente ao iniciar a eletrodeposição haverá um processo de empobrecimento de íons na interface líquido/peça, causando redução na velocidade de deposição, péssima distribuição de camada, "pitting" em excesso e depósitos pulverulentos.

Portanto a renovação da solução eletrolítica junto à superfície significativa da peça durante a deposição é de extrema importância para obtermos do processo o máximo de rendimento, velocidade de deposição e aspecto.

Entretanto, o resultado ideal somente é obtido se seguirmos algumas regras básicas para uma perfeita instalação do sistema de agitação a ar, e que, caso negligenciadas, trarão as mesmas conseqüências drásticas já citadas, comprometendo significativamente o desempenho do banho.

Em outras palavras, não basta introduzirmos uma mangueira para insuflar ar na lateral de um tanque, pois estaremos provocando um turbilhão desordenado de borbulhamento localizado, sem uma perfeita distribuição da agitação. Da mesma forma, também de nada vale fazermos uma furação aleatória e sem critério nos tubos destinados a insuflar, pois todo o ar irá ser expelido nos primeiros orifícios, deixando de chegar a todo o prolongamento do tanque, e assim não obteremos a homogeneidade de agitação necessária.

Por esta razão, esta orientação técnica tem a finalidade de informá-los sobre a correta forma de instalar o sistema de agitação.

Regra fundamental: Nunca usar compressor de ar. Este equipamento tende a levar óleo para o sistema, contaminando seriamente o banho galvânico, a não ser que seja compressor de anel líquido, que gera ar limpo, frio e a um nível de ruído muito baixo. Entretanto, em virtude do custo muito elevado, este equipamento somente é especificado para grandes instalações.

Utilize um soprador de ar, que fornece grandes volumes de ar a baixa pressão e isento de óleo, com capacidade suficiente para promover uma perfeita agitação.

Geralmente os fornecedores deste tipo de equipamento possuem tabelas de cálculo para indicar o tamanho e a capacidade ideal do soprador para o seu tanque necessitando apenas informar:

- 1. Altura do líquido do banho até o nível de trabalho: "coluna d'água"
- 2. Peso específico da solução
- 3. Área superficial da solução

uma pressão de 1 psi**, para cada 530 mm de profundidade de solução.

Detalhamento técnico

1. Instalação do soprador

Em virtude deste equipamento gerar muito calor e ter alto nível de ruído, recomendamos observar o seguinte:

- 1.1 Instalar na aspiração do soprador filtros de ar,
- 1.2 Instalar na saída dissipador de calor,
- 1.3 Prever tubos galvanizados nos primeiros metros junto à saída,
- 1.4 Prever supressor de ruído ou enclausurar,
- 1.5 Instalar válvula de alívio no sistema para não ocasionar danos à tubulação em casos de não ser utilizada a capacidade total.

2. Tubulações de ar

As informações a seguir devem ser consideradas para obtenção da melhor distribuição de ar ao longo de todo o tanque e contemplam o objetivo real desta orientação técnica

- 2.1 Escolha do material: Apesar de depender da natureza química do banho, geralmente é utilizado o polipropileno, sendo que o PVC deve ser empregado exclusivamente para banhos de cromo.
- 2.2 Posicionamento: Em hipótese alguma colocar a tubulação deitada diretamente no fundo do tanque, pois a agitação irá levantar partículas insolúveis e indesejáveis que permanecerão em constante evolução, provocando aspereza ou chuvisco nas peças.
- 2.3 Na construção do tanque de trabalho prever a colocação de berços que sirvam de assento para o(s) tubos ficarem deitados, a pelo menos 70 a 100 mm do fundo.
- 2.4 Embora possa haver meios mais modernos, a utilização de cordões de polipropileno ainda constitui uma forma prática e eficiente de garantir uma boa fixação do tubo junto ao berço, impedindo-o de levantar ao ser ligada a agitação.
- 2.5 Detalhes da furação: Fazer furação dupla direcionada para baixo em ângulo de 45°, correspondendo a um ângulo de 90° a distância entre furos, conforme a figura l.

Nota importante: Com o objetivo de promover agitação uniforme em toda a extensão do tanque, é fundamental que a tubulação de distribuição seja colocada no sentido horizontal, plana, e que o diâmetro do tubo-mestre de alimentação seja igual a ou 50% maior que a somatória dos

____Manual Técnico

^{*} Pé cúbico por minuto/pé quadrado

^{**} Libra por polegada quadrada

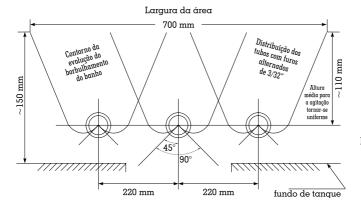


Figura 1 — Esquema
de distribuição de
tubos paralelos para
sistema padrão de
aqitação a ar.

diâmetros dos furos a serem efetuados ao longo dos tubos de distribuição.

Portanto recomendamos um tubo de distribuição com diâmetro mínimo de 1" e máximo de 3", considerando para estes diâmetros um comprimento máximo de 1800 mm de tubo.

Distância entre furos: Usualmente 150 mm (6 polegadas) é pratica comum.

Entretanto, dependendo do comprimento do tanque, esta distância pode variar de $25~\alpha~200~$ mm.

Diâmetro do furo: Utilize broca de 2,381 mm (3/32"). As de 1/16 a 3/16 também são empregadas (Figura 2).

3. Determinação do número de tubos da distribuição:

3.1 Tanques de lavagem — A agitação em tanques
de lavagem
conjuntamente
com outros métodos, contribui
decididamente
para uma me-

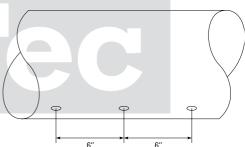


Figura 2 — Distância entre furos

lhor qualidade de lavagem, e de economia de água. Normalmente requerem somente uma tubulação simples.

3.2 Tanques de eletrodeposição- Em virtude da gazeificação envolvida em razão do fluxo de elétrons, requerem tubulações duplas paralelas, e em tanques cuja zona de agitação tenha largura igual ou superior a 700 mm, recomendamos até 3 tubos.

4. Esquema de distribuição de tubos paralelos - O fluxo perfeito

O desenho (figura 1) demonstra claramente o que ocorre dentro do tanque ao acionarmos a agitação.

O ar ao sair dos orifícios não vai diretamente ao fundo do tanque, fazendo uma curva alguns milímetros abaixo e iniciando um movimento ascendente e em ângulo direcionado para a superfície do tanque.

Importante: Ainda na figura 1, é indicado que a uniformidade da agitação a ar de um banho só atinge a ideal a uma altura de 110 mm a partir da parte inferior do tubo de agitação. Portanto, é um detalhe importante ao se projetar a altura das gancheiras e o posicionamento das peças.

5. Sifonação

É o nome que se dá ao fenômeno indesejável e muito comum do líquido do banho ser sugado para dentro da tubulação de ar durante uma interrupção de energia, indo misturar-se com outros banhos no interior do tubo-mestre de ar. Caso a agitação seja restabelecida, esta mistura poderá ser levada para todos os banhos, contaminando o processo.

Para evitar este inconveniente recomendamos fazer no tubo que entra no tanque um furo (3/32") a 50 mm acima do nível do banho, criando assim pressão contrária de ar, impedindo a sifonação.

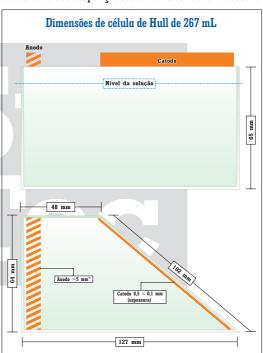
6. Filtração

A técnica da agitação a ar é benéfica quando utilizada corretamente. Entretanto, a falta de um sistema adequado de filtração do banho provocará acúmulo de partículas insolúveis, que ficarão em constante evolução provocando aspereza nas peças.

7. Contra-indicação

Não recomendamos o emprego da agitação a ar em banhos alcalinos de cobre e zinco, a fim de minimizar a formação de carbonatos e nunca utilizar em banhos de estanho ácido, em virtude de rápida oxidação do estanho a estanato.

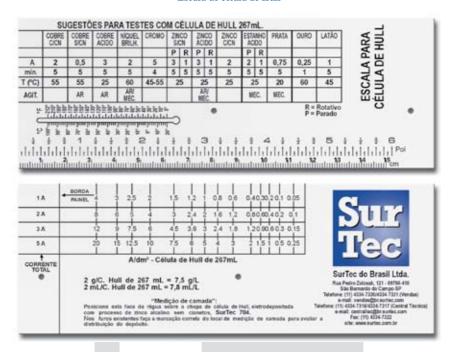
8. Molhadores


Lembramos também que em banhos de níquel agitados a ar devemos utilizar o molhador apropriado. Caso adicionarmos o molhador para o sistema de agitação mecânica, haverá forte geração de espuma.

Instruções para uso da célula de Hull

A célula de Hull é uma unidade miniaturizada de revestimento eletrolítico, projetada para produzir depósitos catódicos que registram os caracteres da eletrodeposição obtidos em todas as densidades de

corrente no âmbito da escala de operação. É óbvio que em muitos casos, um problema específico poderá ter uma variedade de causas diferentes. Uma vez que, não é econômico ou lógico para os galvanizadores tratar as possíveis causas em seu tanque, experiências tem mostrado que testes podem ser feitos em pequenas amostras da solução em questão, usando a célula de Hull para determinar a causa exata e/ou correções para um problema específico.


Os caracteres de depósito obtidos dependem das condições do banho com relação aos componentes primários, aditivos e impurezas. A célula de Hull possibilita ao operador experiente determinar os seguintes fatos com relação aos banhos de eletrodeposição:

1. Limites aproximados de densidade e de brilho desejado:

É determinado pela comparação das áreas de depósito brilhante num painel com as densidades de corrente dadas na escala para célula de Hull. Portanto, se a faixa operacional ou o brilho estiver entre 3,2 cm e 6,4 cm medido a partir do lado esquerdo do depósito e a corrente total aplicada for 3 Ampères, as densidades de corrente respectivamente correspondentes na escala serão 7,0 A/dm² e 2,5 A/dm².

Escala de célula de Hull

Concentrações aproximadas dos constituintes primários, tais como: teores de zinco, cianeto de sódio, níquel metal, etc.

Geralmente quanto mais alto for o teor metálico no banho, mais alta (mas não necessariamente a mais larga) é a faixa operável de densidade de corrente brilhante. A voltagem ao longo do teste de célula de Hull pode indicar alterações na composição de alguns banhos, exemplo: cianeto em zinco, cobre ou impurezas de cromo trivalente no cromo.

3. Concentrações de agentes de adição:

São poucos os agentes de adição que podem ser determinados por análises químicas convencionais. Usualmente a célula de Hull fornece o único meio alternativo satisfatório para o controle da adição desses importantíssimos materiais, demonstrando seu desempenho e seu efeito visível sobre os depósitos obtidos. Este controle pode ser reduzido ao adotar o consumo real em A/h para as adições de manutenção.

4. Impurezas metálicas ou orgânicas:

Metais estranhos ou outras impurezas prejudiciais ao banho de deposição exercem um

Sur

efeito irregular na aparência dos depósitos obtidos na célula de Hull, cuja correção pode ser efetuada de acordo com as orientações específicas de cada processo.

5. Averiguação das condições do banho:

Painéis de célula de Hull permitem verificar agentes de adição, poder de dispersão ou a menor densidade de corrente na qual um depósito é produzido, eficiência catódica média, distribuição ou poder de dispersão médio, efeitos de pH, temperatura e produtos de decomposição.

A célula de Hull de acrílico, além dos itens citados acima, permite ao operador observar o depósito na parte de trás do painel, determinando o poder de penetração em densidade de corrente muito baixa. O acrílico também torna possível a visualização completa da solubilidade das adições efetuadas.

Método para execução da célula de Hull

- Colocar o banho de deposição a ser testado até o nível operacional do tanque de trabalho e agitar para homogeinização.
- Coletar a amostra ou usar um tubo amostrador, percorrendo o fundo do tanque uniformemente de uma extremidade a outra.
- 3. Certificar de que a amostra a ser testada seja representativa e manter a temperatura operacional adequada durante o teste. O melhor método para testar em altas temperaturas é utilizar as células, nas quais são incorporados elementos de aquecimento com termostato para controlar a temperatura.
- Usar uma célula de Hull e um cátodo limpo. Se mais de um tipo de banho tiver que ser analisado regularmente, utilizar células separadas para cada tipo de banho, evitando contaminações.
- 5. Uma vez que os testes de deposição com a célula de Hull não se destinam a eliminar as análises químicas rotineiras, essas devem ser feitas antes dos testes de deposição. Sendo assim, a amostra do banho pode ser ajustada antes ou na seqüência do teste com a célula de Hull.

- Os painéis de aço zincados devem ser decapados em uma solução aquosa de ácido clorídrico 50%. Esfregar com um pano úmido e limpo ou uma esponja antes do uso.
- 7. Os tempos de deposição na célula de Hull devem ser precisos para se obter repitibilidade de resultados. Estes tempos não são sempre os mesmos, pois para cada solução haverá um tempo determinado. Um cronômetro deve ser utilizado para tal fim.
- 8. Os volumes adequados de amostra para as células de Hull variam conforme os tipos disponíveis que são de 267 mL, 534 mL e 1.000 mL. Adições de 2 gramas na célula de Hull de 267 mL eqüivalem a uma adição de 7,5 g/L no banho. Jamais colocar a célula de Hull sobre placas quentes.
- Use somente fontes de corrente contínua adequada a cada tipo de banho. Retificadores monofásicos sem o circuito filtrado não deverão ser usados. Para banhos de cromo catalizados usar retificador trifásico de baixo ripple.
- 10. Painéis de aço com uma superfície semi-brilhante e uniforme, podem ser usados mais de uma vez através de uma decapagem química e um conveniente polimento. Entretanto, existe risco do material se danificar. Experiências mostram que superfícies não uniformes ou deficientes causam dúvidas na avaliação dos resultados. Painéis de latão brilhante podem ser utilizados para banhos de cobre, níquel e cromo.

a. Banhos de níquel brilhante:

São provavelmente os de mais difícil controle quando se deseja manter um brilho satisfatório da camada depositada, possibilitando aplicar camada de cromo subsequente sem polimento intermediário. Alguns agentes abrilhantadores podem ser determinados analiticamente. Nestes casos, o teste em célula de Hull não serve para verificação da condição operacional do banho. Outros agentes aditivos não podem ser controlados analiticamente. Nestas situações, os testes em célula de Hull são a única alternativa disponível. Se as adições de agentes abrilhantadores forem de baixa concentração, o banho poderá ser testado diretamente. Por outro lado, se houver indício que as adições dos agentes de adição estão em concentrações elevadas, o banho pode ser diluído com um volume igual do banho isento de abrilhantador antes do teste em célula de Hull.

Concentração excessiva de abrilhantador pode ser também calculada a partir desses testes. Os testes de banhos de níquel brilhante demandam uma qualidade uniforme das placas catódicas de aço que não sejam muito brilhantes. Dessa maneira, pode-se checar a capacidade do banho em produzir brilho.

Antes de testes em célula de Hull, o banho deve ser analisado quanto ao níquel, cloreto, acido bórico e pH.

Um banho de deposição deve ser feito conforme amostrado. Então, os ajustes dos sais devem ser feitos de acordo com as análises e o pH ajustados. Os testes adicionais em célula de Hull deverão ser feitos para determinar possíveis impurezas, assim como os

Manual Técnico

ajustes de agentes de adição. A corrente total para a célula de Hull de 267 mL é de 2 A. A temperatura deve ser mantida nas mesmas condições do banho de produção. Para problemas na baixa densidade de corrente, painéis de 1 A são recomendados.

tempo de deposiç \tilde{a} o = 5 ou 10 minutos.

anodo de níquel ensacado.

O número máximo de teste com uma só amostra é de 3 deposições com 267 mL.

Agitação da solução, se necessária, poderá ser feita com um bastão de vidro perto do cátodo ou com o agitador Hull tipo "vai-e-vem". Testes em célula de Hull nem sempre indicam tendências para o "pitting".

Condições do banho	Aparência do painel
Composição ideal	 brilhante, uniforme, sem "pittings" em toda α extensão do painel.
pH alto	 depósitos amarelados. Podem ficar irregulares e quebradiços na alta densidade de corrente.
pH baixo	 formação de gás no cátodo, azul esfumaçado ou depósitos quebradiços.
Baixo teor de níquel	– άrea queimada na alta densidade de corrente.
Baixo teor de acido bórico	 depósitos estriados na alta densidade de corrente, precipitados de hidróxido de níquel no catodo ou tendência de "pitting".
Bαixo teor de cloreto	 formação de gás no anodo, baixa eficiência anódica.
Alto molhador	 depósitos irregulares e com névoas.
Baixo molhador	 depósitos com pitting notados na alta densidade de corrente. Verificar também a tensão superficial da solução que deverá estar entre 35 e 45 dynas/cm.
Alto abrilhantador primário	 geralmente com alta tolerância, com exceção da solubilidade. O banho torna-se turvo.
Baixo abrilhantador primário	 fosco, depósito quebradiço não uniforme; geralmente nas densidades de corrente mais altas, receptividade de cromo deficiente.
Alto abrilhantador secundário	 depósito quebradiço; geralmente depósito deficiente na baixa densidade de corrente.
Baixo abrilhantador secundário	 depósito semi-brilhante, baixo nivelamento.

depósito quebradiço e estriados, geralmente

sobre toda área de deposição.

Contaminação orgânica

Óleo no banho — "pitting" ou aparência de casca de laranja nos depósitos, falhas que representam pouca camada.

Alta temperatura no banho — depósitos foscos e nublados.

Baixa temperatura no banho $\ -\$ depósitos foscos e/ou queimados na alta

densidade de corrente.

Impurezas (escurecido na baixa densidade de corrente)

Cobre ou zinco – veja "purificação eletrolítica".

Cromo — enegrecido na alta densidade de corrente

e baixa penetração do depósito.

Ferro — leve queima na alta densidade de corrente

e aparência de casca de laranja.

b. Banhos de cobre cianídrico Rochelle:

O banho de cobre Rochelle requer alguma experiência para interpretar os painéis de célula de Hull adequadamente, uma vez que depósitos normais são lisos e meramente semi-brilhantes em condições ideais. O banho trabalha para 2 propósitos: 1 para camadas finas, nas quais as variações na composição do banho podem ser toleradas e outro para camadas de depósito ate 10 micrometros para coberturas protetivas, cuja composição do banho é mais crítica.

Uma corrente total de 2 A deve ser usada por 5 a 10 minutos com uma temperatura de banho de 56 °C ou outra temperatura usada na prática. Cátodos de aço são recomendados, o anodo deve ser de cobre eletrolítico, tipo OFHC. O melhor meio de aquecer as soluções é pelo uso da célula de Hull, com aquecimento.

Condições do banho Aparência do pair

Composição ideal — liso, depósito razoavelmente uniforme na faixa de 0.5 - 4.5 A/dm².

Composição ideal — (como o anterior, mas usando uma solução agitada) — semi-brilhante 0,3 - 6,0 A/dm².

Baixa concentração em geral — baixa eficiência catódica, gases, semi-brilhante mas depósito fino, dependendo da concentração real.

Alta concentração em geral — mesma que em composição ideal.

Baixo cianeto livre — depósitos foscos em algumas partes, não tão uniforme e liso como na composição ideal

solução levemente azul.

Cianeto livre levemente alto — eficiência mais baixa do que a composição ideal,

porém brilhante.

Cianeto livre muito alto — 15,0 g/L ou maior — baixa eficiência; depósito

____ Manual Técnico

Baixo sal de Rochelle

queimado na alta densidade de corrente.

depósito fosco similar ao baixo cianeto livre,
mas solução não azul.

 melhor, mais brilhante, aparência de depósitos mais uniformes do que a composição ideal, possivelmente eficiência catódica mais baixa.

Baixo carbonato — nenhum efeito no cátodo; polarização anódica pode ser observada.

Alto carbonato — acima de 60 g/L — apreciável perda de brilho.

pH baixo (11,0) — depósitos levemente irregulares.

pH alto (13,5 ou maior) — corrosão anódica deficiente, deposito áspero

inclusão das partículas no depósito.

Impurezas:

Chumbo

 pode tornar-se levemente brilhante, também pode causar depósitos escuros; concentração (sendo usado como abrilhantador) é muito critica.

tidade) — eficiência catódica reduzida; depósito fino e asperezas.

latonado, depósito irregular.

cobertura deficiente. Nenhum depósito na baixa densidade de corrente. Podem ser corrigidos por pequenas adições de 0,075 g/L de hidrossulfito de sódio, adicionado ao banho como um pó. (0,02 gramas/267 mL em célula de Hull).
 Adições podem ser feitas nestas quantidades até que o banho seja corrigido. Evitar por todos os meios adições excessivas de hidrossulfito de sódio para prevenir depósitos ásperos.

Ferro (grande quantidade)

Zinco Cromo

c. Cianeto de cobre de alta velocidade:

Banhos de cobre de alta velocidade prestam-se muito facilmente ao controle de teste galvânico, visto que as variações na composição do banho são imediatamente refletidas em variações nas faixas de deposição. Diferenças moderadas no conteúdo de cianeto de cobre da quantidade especificada na composição do banho não mostra qualquer efeito na célula de Hull, uma vez que outros componentes estão dentro das faixas de concentração recomendadas.

Uma corrente total de 2 A deve ser usada por 5 minutos com a solução na temperatura de operação. O modelo de célula de Hull com aquecimento proporciona o melhor método para manter a temperatura durante os testes .

Painéis de latão polidos são os cátodos preferidos, mas painéis de aço podem ser usados se forem cobreados previamente num banho de cobre cianídrico de baixa eficiência ou cobre Rochelle. Anodo de cobre eletrolítico tipo OFHC deve ser usado.

Para revelar a faixa brilhante depositada, a solução deverá ser agitada. Agitação pode ser feita ou por movimentos lentos de uma bagueta ou pelo uso de um agitador de célula de Hull tipo "vai-e-vem".

Condições do banho	Ap	arência do painel
Composição ideal	-	faixa de brilho de 0,5 - 6,0 A/d m^2 . Densidades de corrente mais altas mostram depósitos foscos vermelhos escuros.
Alto cianeto livre	-	baixa faixa de brilho, com depósitos queimados avermelhados na alta densidade de corrente.
Baixo cianeto livre	-	alta faixa de brilho, com faixa queimada mais estreita do que o normal na alta densidade de corrente.
Alto agente molhador	_	nenhum efeito em célula de Hull.
Baixo agente molhador	-	falta de brilho e de uniformidade nas faixas de media e baixa densidade de corrente, assim como tendência a "pittings" na alta densidade de corrente.
Alta soda cáustica ou		
potassa cáustica	_	fosco em geral.
Baixa soda cáustica ou		
potassa cáustica	_	faixa estreita e de baixo brilho.
Alto carbonato	-	depósitos foscos e levemente granulados na alta densidade de corrente.

d. Banhos de cobre ácido brilhante:

A célula de Hull é uma excelente ferramenta para o controle de testes galvânicos, manutenção preventiva e o quia de problemas para banhos de cobre ácido brilhante .

Os ajustes de corrente total normalmente são de 1 A por 10 minutos para investigações de condições de baixa densidade de corrente; caso contrário, usar 2 A por 5 minutos. Painéis de latão polido são usados. Já que nivelar é a função principal deste tipo de processo, um painel riscado é freqüentemente empregado para verificação de nivelamento.

Na extensão total do painel (cerca de 10 cm) são feitos riscos controlados com o auxilio de lã de aço ou lixa fina. A largura da extensão destes riscos é normalmente de 1,5 a 2,0 cm, feita na parte inferior do painel. Este procedimento é feito antes de limpar o painel para

testes galvânicos subseqüentes. A agitação a ar é recomendada para avaliações de cobre ácido brilhante. Nota importante e adicional — a temperatura do banho deve ser controlada dentro da faixa recomendada para interpretação válida e correlação entre célula de Hull e banhos de produção.

Condições do banho	Aparência do painel
Composição ideal	 painel totalmente brilhante. Se um painel riscado for empregado, os riscos deverão ser recobertos, com exceção da baixa densidade de corrente. Isso denota banho muito bem nivelado. O anodo adquire coloração preta.
Baixo acido sulfúrico	 fosqueamento na área de baixa densidade de corrente. Queima na área de alta densidade de corrente.
Alto acido sulfúrico	 eficiência catódica diminuída, excesso de dissolução anódica.
Baixo cloreto	 depósito fosco na baixa densidade de corrente, diminuição da eficiência e condutividade.
Alto cloreto	 perda de nivelamento, de fosco a nebuloso, na baixa densidade de corrente. Anodo com coloração cinza.
Teor de cobre	 variação de mais ou menos 25% mostrará pequena ou nenhuma mudança. Baixo teor de cobre causará índices de deposição reduzidos. O alto teor de cobre causará uma queda no nivelamento.
Abrilhantadores	 baixos abrilhantadores causarão depósitos foscos e nebulosos além da queda do nivelamento e perda do brilho em geral. Excesso de abrilhantador causará perda de eficiência e fosqueamento nas áreas de baixa densidade de corrente.
Impurezas	

Impurezas

- Níquel, antimônio, arsênico e silicatos causam asperezas e distribuição da camada deficiente e desigual. Ferro, adicionalmente, causará a redução da eficiência catódica.
- Cromo depósitos manchados, nuvens e bolhas.
- Orgânicos o banho de cobre ácido é mais sensível a todo e quaisquer mate-

riais orgânicos estranhos. "Pittings" e depósitos quebradiços ocorrem devido a falta de ductilidade de co-deposição ou oclusão de compostos orgânicos.

e. Zinco cianídrico brilhante - banhos de médio cianeto e convencionais:

Testes em célula de Hull são muito valiosos para o controle de banhos de zinco brilhante, já que com experiência, a estabilidade do banho pode ser determinada, assim como os agentes de adição e impurezas. Deve-se usar anodos de zinco e uma corrente total de 1 A para banhos rotativos e 2 A para banhos parados, sobre painéis de aço.

Condições do banho	Aparência do painel
Composição ideal	 superfície brilhante e uniforme.
Alta relação de NaCN/Zn°	 brilho na baixa densidade de corrente e baixa eficiência catódica mostrados pela excessiva evolução de gás.
Baixa relação de NaCN/Zn°	 brilho na alta densidade de corrente e cinza na baixa densidade de corrente.
Alto teor de soda cáustica	 similar a baixa relação NaCN/Zn°; aparência cristalina do depósito.
Baixo teor de soda cáustica	 similar a alta relação NaCN/Zn°; polarização anódica excessiva.
Alto teor de zinco (acima de 30	-
	 brilho na alta densidade de corrente e fosco na baixa densidade de corrente.
Baixo teor de zinco (abaixo de	10 g/L)
	 em banhos convencionais, eficiência catódica deficiente com gaseificação excessiva.
Agente de brilho	 melhor controlado pela observação do trabalho de produção no tanque. Baixo abrilhantador usualmente evidenciado por depósitos foscos na baixa densidade de corrente.
Purificador baixo	 total fosqueamento ou queima na alta densidade de corrente.
Impurezas	
(mostrada pela formação de bolhas	ou depósitos enegrecidos que mancham imediatamente).

Cobre — escurece o depósito quando imerso em ácido nítrico a 1% v/v.
 Chumbo — fosqueia o depósito, escurece na imersão em ácido nítrico.
 Cádmio — em pequenas quantidades não fosqueia o depósito diretamente,

porém, escurece na imersão em ácido nítrico.

____Manual Técnico

f. Banhos de zinco alcalino brilhante sem cianetos - SurTec 704:

Testes em célula de Hull para o controle de banhos de zinco alcalino brilhante sem cianetos são uma ferramenta valiosa para o controle da estabilidade do banho, níveis de agente de adição e impurezas. Condições operacionais: painéis de aço, anodo de ferro, banhos parados: 2 A, banhos rotativos: 1 A, tempo de deposição: para 1 A - 10 minutos e para 2 A - 5 minutos.

Condição do banho

Composição ideal

Alto teor de zinco

Baixo teor de zinco

Baixo teor de soda cáustica

Alto teor de soda cáustica

Agentes abrilhantadores

Aparência do painel

- superfície brilhante e uniforme.
- alta eficiência e brilho na alta densidade de corrente e conseqüente queda na eficiência, dispersão e brilho na baixa densidade de corrente.
- oposto das condições observadas com alto metal,
 a baixa densidade de corrente é mais brilhante;
 a alta densidade de corrente do painel
 apresenta uma queda na eficiência e brilho.
- polarização anódica excessiva (não confundir com a descoloração normal característica do anodo de zinco neste tipo de processo). Maior voltagem é necessária para se obter a amperagem no teste inicialmente e durante os 5 minutos do tempo de deposição. Vários ajustes serão necessários para manter a corrente e eficiência do banho deficiente.
- não detectável por um pequeno período de teste em célula de Hull. O banho de produção mostrará o aumento incomum do metal.
- melhor controlado por observação das partes produtivas. Seguir a recomendação do boletim.
 Baixos abrilhantadores são geralmente evidenciados por um depósito fosco na totalidade e com queima na alta densidade de corrente.

Altos teores de abrilhantadores são observados com um depósito brilhante total, algumas vezes acompanhados por descascamentos do depósito. Um painel de 3 A, sem queima, na alta densidade de corrente, pode ser uma outra indicação do excesso de abrilhantador.

Impurezas

108

- Orgânicas formação de bolhas ou depósitos enegrecidos que mancham imediatamente.
- Ferro depósitos foscos que viram azul enegrecidos após imersões em ácido nítrico 1% v/v.
- Cobre o depósito escurece na solução de ácido nítrico 1% v/v.
- Chumbo depósito fosco que não escurece após imersão em ácido nítrico 1% v/v.
- Cádmio escurecimento do depósito na solução de ácido nítrico 1% v/v e uma faixa nebulosa na media densidade de corrente.
- Cromo bolhas no painel na área de baixa densidade de corrente. Se a quantidade for excessiva, haverá falta de depósito nesta mesma área.

g. Banhos de zinco ácido brilhante à base de cloreto:

A célula de Hull é um instrumento muito útil para o controle de banhos de zinco ácido. Devido a alta eficiência deste tipo de processo, mudanças da composição química recomendada são freqüentemente mascaradas. Portanto, é importante ajustar a composição química na faixa de operação recomendada antes de iniciar os testes em célula de Hull.

Condições de pH, temperatura e agitação da solução são muito importantes pela mesma razão quando se procura determinar os possíveis problemas de impurezas. Para operações de tambor rotativo, painéis de 1 Å são ideais. Para operações em gancheiras, painéis de 2 Å são recomendáveis e painéis de aço são indicados. Agitação catódica tipo "vai-e-vem" é necessária para se obter a interpretação adequada das condições de produção de banhos agitados a ar e se uma célula de Hull com agitação a ar não estiver disponível. Tempo de deposição — 5 minutos, usando anodo de zinco.

Condição do banho	Aparência do painel
Composição ideal	 painel totalmente brilhante com menos de 0,6 cm de queima na alta densidade de corrente (borda do painel), no caso de usar 2 A.
Bαixo teor de zinco	 queima na alta densidade de corrente (borda do painel). Aspereza excessiva nesta mesma área.
Alto teor de zinco	 baixo poder de dispersão na baixa densidade de corrente.
Baixo teor de cloreto	 a eficiência na baixa densidade de corrente é deficiente (depósito falhado).
Alto teor de cloreto	não detectado.
Agentes abrilhantadores	 seguir os padrões de adição recomendados

_____Manual Técnico

pelo boletim técnico da SurTec.

Baixa ahrilhantadar

medir a largura da faixa de aspereza ou a
queima da alta densidade de corrente
(borda do painel) em um painel original do banho.
 Uma adição de abrilhantador que dá uma
redução mensurável na aspereza ou na largura
da queima é uma indicação de que o
abrilhantador está abaixo do ideal.

Alto nível de abrilhantador

 aparência extremamente brilhante da média a alta densidade de corrente. Em casos extremos, a área de baixa densidade de corrente pode mostrar um depósito falhado e bolhas na alta densidade de corrente.

Impurezas

- Ferro depósitos amarelados; manchas de azul a preto na alta densidade de corrente após imersão em ácido nítrico a 1% v/v ou em solução de passivador azul.
- Cobre manchas de marrom a preto na baixa densidade de corrente quando imerso em ácido nítrico a 1% v/v ou em solução de passivador azul.
- Cádmio fosqueamento em geral, manchas pretas na baixa densidade de corrente após imersão em ácido nítrico a 1% v/v ou em solução de passivador azul.
- Chumbo depósito falhado na baixa densidade de corrente.
- Cromo fosqueamento em geral, primeiramente aparente na baixa densidade de corrente. Progressivos graus de contaminação de cromo produzem depósitos falhados na baixa densidade de corrente e bolhas na alta densidade de corrente.

h. Banhos de latão:

Testes em célula de Hull de banhos de latão proporcionam um método muito interessante para o aprendizado dos princípios fundamentais de operação do complexo do sistema galvânico. Algumas das razões para o incomum, mas previsíveis comportamentos do latão são os seguintes :

- Zinco é depositado a partir do estado bivalente, enquanto o cobre é depositado a partir do estado monovalente.
- Zinco pode existir como complexos de cianeto de zinco-sódio ou zincato de sódio (ambos presentes no latão), onde o cobre pode existir na forma de um ou mais complexos somente com cianeto de sódio, dependendo da temperatura.
- Mudanças no pH alteram a proporção da relação cobre/zinco depositados, sendo que 2 faixas são utilizáveis, conforme veremos a sequir:

Descrição é dada para solução de latão do tipo convencional, mas os mesmos princípios aplicam-se a outros tipos de banhos de latão. Para banhos de latão, um painel de aço é usado a uma corrente total de 1 Å por 5 a 10 minutos. Um anodo de ferro ou latão pode ser usado. A temperatura do banho deve estar em cerca de 35 °C. Se o pH for medido, o método mais correto é através de um pHmetro. A composição ideal do banho dá um brilho amarelado ou depósito amarelo esverdeado de 0,1 - 4,0 Å/dm² em painéis de célula de Hull.

O método mais simples de controle de banho é a observação da cor do depósito de latão na ausência de análise química e medição de pH. Se o depósito estiver na cor amarela ou amarela esverdeada, a composição é aproximadamente 70 a 80% de cobre, sendo o resto zinco. Uma cor rosa ou avermelhada resulta na relação muito alta ou muito baixa de zinco no depósito. O primeiro ponto para determinar a correção de um banho de latão é se o teor de zinco do depósito estiver muito alto ou muito baixo. O procedimento para isso é o seguinte:

- Fazer um painel de teste original, observando a cor e a faixa de deposição. Se a
 cor estiver boa, mas a faixa estiver estreita, a proporção dos componentes esta
 aproximadamente certa. A faixa pode ser comumente ampliada pela adição de
 cianetos de cobre ou zinco com cianeto de sódio.
- 2. Se o painel não for um amarelo esverdeado ou amarelo uniforme, pegar 2 amostras do banho, adicionar 7,5 g/L de bicarbonato de sódio para uma amostra e 3,7 g/L de soda cáustica para a outra. No primeiro caso, o pH é reduzido e, conseqüentemente, o teor de zinco do depósito é reduzido. O inverso é verdadeiro para a segunda amostra. O procedimento deve ser repetido nas mesmas amostras mas com o dobro das adições respectivas, observando qual adição melhora a cor do depósito (alto zinco no depósito produz um depósito pulverulento laranja amarronzado característico na baixa densidade de corrente).

Se a adição de bicarbonato melhorar o depósito, o banho pode ser corrigido por quaisquer das seguintes adições para aumentar a relação de cobre/zinco no depósito :

- 1. Adicionar bicarbonato para baixar o pH, ou
- 2. Adicionar cianeto de cobre, ou
- Adicionar cianeto de sódio para aumentar o teor de cianeto livre.

Se a adição de soda cáustica melhorar o depósito, o banho pode ser corrigido por quaisquer das seguintes adições para diminuir a relação de cobre/zinco no depósito :

- 1. Adicionar soda cáustica para aumentar o pH, ou
- 2. Adicionar cianeto de zinco, ou

____Manual Técnico

 Adicionar cianeto de zinco e cianeto de cobre para diminuir o teor de cianeto livre.

O teor de zinco do depósito pode ser reduzido pela :

- 1. Diminuição do cianeto de zinco no banho;
- 2. Baixando o pH do banho;
- 3. Aumentando o cianeto livre do banho;
- 4. Aumentando a temperatura;
- 5. Aumentando a densidade de corrente:
- Aumentando a espessura do depósito até cerca de 3,2 micrometros. O inverso destes aumenta o teor de zinco do depósito.

A adição de cianeto de cobre ou cianeto de zinco tende a baixar o pH do banho, considerando que adicionando cianeto de sódio, a tendência é a aumentar o pH do banho e, conseqüentemente, o pH deve ser medido e controlado. O melhor valor de pH depende essencialmente da relação do cianeto metal no banho. Para fins de controle, a seguinte tabela pode ser usada como quia:

Relação CuCN/Zn (CN)	pH ideal (pHmetro)	cor
3/2 (para injeção de borracha)	10,3 (faixa 10.1-10.5)	amarelo-limão
3/1 (decorativa)	12,0 (faixa 11.5-12.5)	amarelo-ouro

A faixa de pH de 10,5 a 11,5 não é comumente utilizada, devido a tendência a depósitos estriados e irregulares.

Hidróxido de amônio quase sempre melhora a cor do depósito, a menos que a composição e pH do banho estejam perto do ideal. Carbonato de sódio deve estar presente e banhos novos devem ter 35 g/L inclusos em formulação.

Em geral, o procedimento acima restaura quase qualquer banho de latão para operação, mesmo sem análises químicas, desde que depósitos aceitáveis sejam obtidos numa faixa ampla de composição do banho. É muito importante, entretanto, que somente um componente seja variado em qualquer teste de deposição, desde que as funções múltiplas de alguns dos ingredientes freqüentemente tendam a confundir a tendência aparente. Assim, a adição de cianeto de sódio tende a aumentar o pH, o qual deverá favorecer a deposição do zinco, mas este efeito é mais do que contraposto pela diminuição da eficiência catódica com relação ao zinco, deste modo usualmente um percentual de zinco mais baixo é depositado.

Impurezas não são quase encontradas. Chumbo tende a fazer um depósito fosco e escuro. Arsênico (algumas vezes sugerido como um abrilhantador) tende a produzir depósitos brancos.

Somente experiências em fazer tais testes fará clarear os termos "rosa/branco", etc, aplicado a depósitos comerciais, mas seguindo-se o plano acima de deposição e diagnósticos, é possível combinar qualquer cor que se deseja do depósito.

i. Banhos de cromo:

A célula de Hull dispõe de um método rápido, simples e positivo para determinar e corrigir a relação acido crômico/sulfato nos banhos de cromo. O procedimento deve ser seguido cuidadosamente conforme abaixo. Em conjunto com testes de cromo em célula de Hull de 267 mL (porcelana), esta disponível uma célula dupla na qual 2 painéis podem ser simultaneamente preparados com um depósito de níquel uniforme.

Método para relação sulfato

Reagentes necessários: ácido sulfúrico 1 N e carbonato de bário

Procedimentos:

- Desengraxe e ative um painel de latão. Para assegurar boa aderência do níquel e do cromo, não deixar os painéis passivarem.
- 2. Usando seu banho de níquel normal, deposite por 5 minutos com níquel, usando uma corrente de 2 A, sendo que o painel é posicionado no lado mais longo da célula e o anodo no lado oposto. Um litro de banho de níquel em bom estado deve ser posto de lado exclusivamente para este uso.
- Para controle do cromo duro, o procedimento é o mesmo como para o cromo decorativo com painéis niquelados e com um banho de cromo na temperatura de operação em produção.
- Enxaguar o painel niquelado, transferí-lo para a amostra de banho de cromo na célula de Hull de 267 mL e imediatamente ligar a corrente. O depósito deve ficar por 3 minutos com 5 A. O banho deve ser mantido a 43 °C ou temperatura de operação.
- 5. Se a relação ácido crômico/sulfato estiver ideal e o banho normal com relação ao cromo trivalente, o painel ficará coberto com cromo cerca de 75 a 80 mm a partir da alta densidade de corrente e mostrará pouco ou nenhuma iridescência sobre a área não depositada.
- 6. Se "arco-íris" ou óxidos marrons estiverem presentes no níquel sem depósito, o sulfato está um tanto quanto baixo. Se o depósito de cromo estiver manchado, o sulfato está muito baixo. Adicionar 1 mL de ácido sulfúrico 1 N na célula de Hull de 267 mL e repetir estes aumentos até que a faixa de deposição ideal seja atingida. Com pouca experiência, a adição pode ser feita com 1 ou 2 testes. Cada 1 mL / 267 mL é equivalente a 9,1 mL de ácido sulfúrico 66 °Bé/100 litros de banho.
- 7. Se a faixa de deposição for estreita, mas nenhuma iridescência for observada, o

____Manual Técnico

teor de sulfato está muito alto para a concentração de ácido crômico. Adicionar 0,13 g/267 mL (0,485 g/L) de carbonato de bário e agitar por alguns minutos. Cada adição de 0,13 g/267 mL (0,485 g/L) de carbonato de bário equivale a 48,75 gramas de carbonato de bário/100 litros de banho de cromo.

Notas sobre procedimentos

- O teste acima é baseado na suposição que o teor de cromo esteja correto. Se um teste no hidrômetro ou análise mostrá-lo que esta baixo, o ácido crômico deve ser adicionado a um tanque antes de testá-lo na célula de Hull.
- É importante que a amostra representativa do banho seja usada para teste, esta é tomada através de um tubo de amostragem.
- Se 3 ou mais adições de carbonato de bário são requisitadas, certifique-se de que a solução na célula de Hull esteja perfeitamente agitada para garantir a reação completa.
- Se houver gaseificação no cátodo intermitentemente ou não estável, o teor de sulfato esta muito alto e varias adições podem ser acrescentadas para a primeira correção.
- 5. Algumas instalações requerem um teor de sulfato mais alto do que o normal para evitar estrias brancas, as quais são resultantes dos "arco-íris", ficando subseqüentemente depositadas. Neste caso, ajustar o sulfato levemente mais alto ao ponto que quaisquer "arco-íris" sejam observados no painel mesmo se a faixa de deposição estiver um pouco mais estreita.
- 6. O método de teste de deposição dá a melhor operação de banho de cromo, mas outros fatores tais como ajustes deficientes do níquel brilhante podem resultar em depósitos passivados de níquel, não mostrando uma faixa normal de deposição de cromo.

j. Banhos de estanho ácido brilhante a base de sulfato

Geralmente são utilizados painéis de 1 A para banhos rotativos; 2 A para banhos parados, e de 3 a 5 A para banhos de linhas contínuas de alta velocidade para fios e chapas.

Os banhos devem ser analisados antes dos testes em célula de Hull e a composição química ajustada de acordo com as recomendações do fabricante. Painéis de aço poderão ser usados para investigação de rotina, painéis de latão polidos facilitarão a identificação dos problemas relativos ao "pitting".

tempo de deposição — 5 minutos.

ondições do banho Aparência do painel	
Composição ideal	 teste com 2 A produzirá um depósito brilhante, branco e polido sobre todo o painel, exceto na extrema baixa densidade de corrente; esta área normalmente é sempre menos brilhante até o cinza fosco.
Alto teor de estanho	 áreas de baixa densidade corrente fosca; baixo poder de dispersão; polarização anódica que forma rapidamente um filme preto esponjoso. O banho aparenta necessitar de mais abrilhantador.
Baixo teor de estanho	 gaseificação excessiva da média a alta densidade de corrente; formação de um precipitado branco no fundo da célula de Hull (Sn⁴⁺); perda de eficiência, "pitting".
Alto ácido	 polarização anódica; filme esponjoso se desenvolve no anodo. Similar ao problema do alto metal.
Baixo ácido	 fosqueamento na baixa densidade de corrente; baixo poder de dispersão; em casos extremos, o anodo aparecerá mal desgastado e as partículas de estanho são visíveis na célula de Hull.
Abrilhantador	 seguir as recomendações da SurTec.
Alto abrilhantador	 espuma excessiva, aspecto amarelado no depósito; painéis adquirem uma tonalidade amarela durante a estocagem.
Baixo abrilhantador	 fosqueamento em geral em toda densidade de corrente; fosco a depósito falhado na baixa densidade de corrente; depósitos foscos na alta

k. Banhos variados

Outros numerosos processos de deposição podem ser controlados pelo teste em célula de Hull e os efeitos de cada variável em cada processo dão informações definidas para o controle. Tais processos como chumbo, níquel-preto, ouro, platina, índio e outros banhos de liga são exemplos de suas aplicabilidades. Informações sobre detalhes dos testes em célula de Hull podem ser adquiridos junto ao fabricante ou determinados pelo operador para suas necessidades particulares para cada processo.

densidade de corrente.

l. Purificação eletrolítica de banhos - purificação seletiva

É fregüentemente necessário eletrolisar os banhos para remover impurezas metálicas.

A maneira na qual isto é feito na célula de Hull é eletrolisar a amostra do banho numa densidade de corrente baixa com anodo e cátodo paralelo, exemplo: o painel na parte mais comprida da célula de Hull com o anodo do lado oposto. Agitação deve ser usada. A quantidade de eletrólise requisitada para o teste numa maneira normal pode então ser extrapolada para o tanque de deposição.

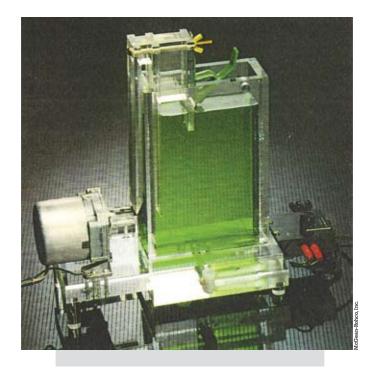
Exemplo:

Um banho de níquel Watts apresenta uma contaminação de cobre.

Um painel de célula de Hull de 10 cm x 5 cm é imerso para se fazer a seletiva.

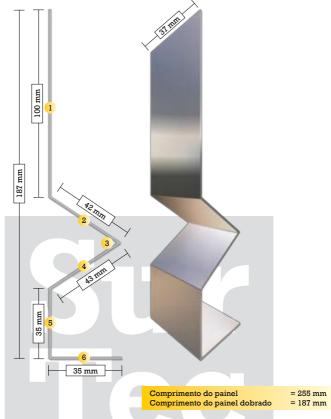
Portanto, a área usada para a eletrólise é de 50 cm² ou 0,5 dm².

Ao aplicar-se uma corrente de 0,5 A/dm² nesta área, temos:


0,5 A/dm 2 x 0,5 dm 2 = 0,25 A por toda a célula de Hull.

Se 20 minutos de eletrólise remover α impurez α de cobre satisfatoriamente, α eletrólise total é de:

 $0.25\,\mathrm{x}$ $\frac{20\,\mathrm{minutos}}{60\,\mathrm{minutos}}\,\mathrm{x}$ $\frac{1.000\,\mathrm{mL}}{267\,\mathrm{mL}}$ = 0.311 Ah/L, necessários para a tal purificação


Instrução técnica

Instruções para uso da célula de Jiggle Rohco

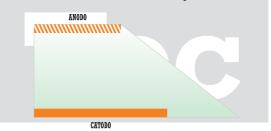
Como uma alternativa ao uso da célula de Hull, esta célula, denominada Jiggle é usada em conjunto com um painel especial de mesmo nome para determinar as características de deposição de uma solução galvânica em suas várias densidades de corrente. A configuração do painel permite uma vasta variedade de regiões críticas de deposição na faixa de 0,5 a 8,0 A/dm² cujo efeito pode ser visualizado tanto na face de recesso profundo como na região plana "prateleira".

Em virtude do volume de solução usado (1.000 mL), as mudanças da composição química são menos críticas e longos tempos de deposição são possíveis (recomendado 20 minutos com 3 a 3,5 A). Tanto a agitação mecânica quanto a ar controlado são utilizados para a circulação da solução.

Região do Painel	Área de	Demonstra
Painel		
1	Média densidade de corrente (3 a 4 /dm²)	Poder de nivelamento com espessura moderada $(1,0-1,5~\mu m)$
2	Baixa densidade de corrente (0,5 a 2 A/dm²)	Poder de nivelamento com depósitos finos (0,25 – 0,80 µm)
3	Muito baixa densidade de corrente (< 0,5 A/dm²)	Incompatibilidade de aditivos, impurezas metálicas ou orgânicas
4	Extrema ou baixa densidade de corrente	Efeito de pequenas quantidades de impurezas metálicas
5	Alta densidade de corrente (5 a 8 A/dm²)	Desempenho com alta espessura (2,0 a 2,5 µm)
6	Face plana com média densidade de corrente	Na parte superior problemas com as- perezas no banho e na inferior baixa concentração de agente molhador.

Instrução técnica

Teste High-Low


Verificação de passivação em banho de níquel

A - Material necessário

- 1. Célula de Hull para banho de níquel com anodo de níquel.
- 2. Célula de Hull para banho de cromo decorativo com anodo de chumbo.
- 3. Retificador de corrente.
- 4. Painéis de latão previamente polidos e desengraxados.
- 5. Termômetro.

B - Procedimento

 Colocar a solução de níquel na célula de Hull e fazer uma chapa a 2 A, 60 °C por 5 minutos com o anodo — catodo conforme figura abaixo:

2. Transferir a chapa depois de lavada para uma célula de Hull contendo banho de cromo decorativo, previamente eletrolisado. Fazer um teste a 5 A, 43 °C por 3 minutos com anodo — catodo conforme figura abaixo:

- 3. Em nova amostra de banho de níquel, fazer uma chapa com anodo catodo como no item "1", e nas seguintes condições: 2 A, 60 °C por 30 segundos e em seguida abaixar para 0,15 A, 60 °C por 10 minutos. Agitar a solução em frente ao catodo nos últimos 2 minutos.
- Lavar a chapa e transferir para a solução de cromo conforme indicado no item "2".
- 5. Repetir "1", "2", "3" e "4" usando solução de níquel já conhecida e que esteja em perfeitas condições. Comparar o poder de penetração do cromo nas quatro chapas.

C - Avaliação

- Manchas brancas e baixo poder de penetração do cromo sobre o níquel geralmente indica níquel passivo.
- Mancha marrom ou arco-íris e pobre poder de penetração do cromo sobre o níquel, geralmente indica impurezas metálicas na solução de níquel ou alto abrilhantador secundário.
- Na chapa de 2 A, a penetração do cromo deverá ser de 75 mm, isto se o cromo e o níquel estiverem em boas condições. Substituição para um níquel bom ou um cromo bom irá mostrar onde realmente está o problema.
- 4. Em 0,15 A, a penetração do cromo cairá aproximadamente de 2 a 4 mm. Se a queda for maior que isto, então o níquel está passivo, provavelmente devido ao excesso de abrilhantador secundário, decomposição de produtos ou impurezas metálicas.

Guia de problemas: causas e soluções Banhos de cobre cianídrico

Cobrelux SurTec 866-B

Problemas	Causas	Correções
Não há depósito	Excesso de cianeto	Compensar adicionando cianeto cuproso (CuCN)
	Contatos invertidos ou isentos	Verificar parte elétrica
Queima na alta densidade de corrente	Baixa temperatura	Corrigir temperatura
Revestimento esponjoso	Excessiva densidade de corrente	Reduzir
• /	pH muito baixo	Elevar o pH para 12,2-12,8
Banho com cor escura	Falta de NaCN	Adicionar
Depósito de cobre queimado	Excesso de carbonato de sódio	Reduzir
Inscrustações no anodo de	Falta de NaCN	Adicionar de 3 a 5 g/L de NaCN
cobre que não se dissolvem		
quando o banho não opera		
Revestimento de cor escura	Baixa área anódica	Trabalhar com peças menores ou aumentar
		os anodos
	Contaminação metálica	Fazer purificação seletiva
Incrustações cinza	Falta de NaCN	Adicionar NaCN
esverdeadas no anodo	Presença de sulfato no banho	Diluir o banho e adicionar sal duplo de cobre
Revestimentos raiados,	Contaminação com cromo	Adicionar redutor de cromo
manchados, com estrutura	pH muito baixo	Aumentar o pH com soda
cristalina baixa e pontos		
Poros no revestimento	Excesso de carbonato	Reduzir
	pH muito baixo	Corrigir
Esfoliação do depósito	Excesso de NaCN	Adicionar cianeto cuproso
	Banho muito frio (inverno)	Aumentar para $>$ 20 $^{\circ}$ C
Depósito nublado	Arraste compostos orgânicos	Tratar com carvão ativo
	Arraste de álcalis	Tratar com carvão ativo e água oxigenada
Asperezas	Partículas estranhas, matéria prima	Eliminar a fonte, filtrar.
	contaminada, anodos de má qualidade,	Adicionar NaCN
	falta de NaCN.	

Guia de problemas: causas e soluções Banhos de cobre ácido

Banhos de cobre ácido SurTec 868-B

Problemas	Causas	Correções
Depósito áspero, corpos	Banho com materiais em suspensão	Filtrar
estranhos	Densidade de corrente excessiva	Usar amperagem correta
	Temperatura muito baixa	Manter entre 22 e 28 °C
	Impurezas orgânicas	Tratar com água oxigenada e carvão. Filtrar
Depósitos esponjosos,	Densidade de corrente excessiva	Usar amperagem correta
quebradiços	Impurezas orgânicas no banho	Tratar com água oxigenada e carvão. Filtrar
Formação de arborescências	Curta distância anodo/peças	Aumentar distância
, and the second	Densidade excessiva de corrente	Usar amperagem correta
	Desbalanceamento de aditivos	Corrigir em célula de Hull
Não há passagem de	Anodos passivados	Aumentar a temperatura
corrente a 15-20°C		e ativar anodos
Baixa velocidade e perda	Baixo teor metálico	Analisar e reforçar
de brilho		
Queima na alta densidade	Falta de ácido sulfúrico	Analisar e reforçar
Depósito escuro e falhado	Falta de íon cloreto	Manter entre 50 e 120 ppm
Depósito estriado	Excesso de íon cloreto	Manter entre 50 e 120 ppm
Depósito escuro e perda	Temperatura alta	Manter entre 22 e 28 °C
de brilho		
Depósito escuro e irregular	Excesso de aditivos	Corrigir em célula de Hull
Depósito escuro, irregular e	Contaminação com cromo	Eliminar a fonte e tratar
com bolhas		com pó de zinco
Chuvisco "pitting"	Contaminação orgânica	Tratar com carvão ativo
	Agitação a ar irregular	Corrigir, conforme instruções neste Manual

Guia de problemas: causas e soluções

Banhos de níquel brilhante

SurTec 855 Br

SurTec 856

SurTec 858

SurTec 858 Fast

Executar todos os testes em uma célula de Hull de 267 mL.

Para o ensaio usar os seguintes dados:

Corrente	1 ou 2 A	
Tempo	5 - 10 minutos	
Temperatura	55 - 60 °C	
Catodos	Ferro ou latão, preferencialmente polidos	
Anodos	Níquel eletrolítico	
Agitação	A ar ou mecânica	

Observações:

- Para banhos rotativos usar 1 A e para parado 2 A. Em situações onde é necessário verificar irregularidades em áreas de densidade de corrente menores ou maiores que as visualizadas com 1 ou 2 A pode ser usada corrente de 0,5 ou 3 A.
- Usar tempos maiores para observar nivelamento ou chuvisco.
- Recomendamos o uso de paineis polidos para melhor visualização de possíveis manchas no depósito. Ressaltamos que o depósito acompanha as características da base, ou seja, numa superfície jateada ou fosca, percebe-se o brilho no depósito, no entanto, é visível o jateado ou fosqueado da base. Já numa superfície polida, teremos como resultado brilho espelhado.
- Para ver o poder de nivelamento do banho, fazer riscos com lixa d'água, da alta até a baixa densidade de corrente, com a mesma pressão e checar até que densidade de corrente o banho de níquel está mostrando bom nivelamento, observando principalmente pela região "riscada" do painel.

Manual Técnico

- Preferencialmente fazer os testes com o mesmo tipo de agitação usado na linha operacional.

Para o pré-tratamento do painel fazer como a seguir:

Para paineis de aço zincados	Para paineis de latão
Imersão em HCl 50 $\%$ v/v para remover a camada de zinco.	Desengraxe eletrolítico
 Lavagem	Lavagem
Desengraxe eletrolítico	Ativação sulfúrica a 5 % v v
Lavagem	Lavagem
Ativação Sulfúrica a 5 % v/v	Niquelação
Lavagem	
Niquelação	

Examinar o painel conforme a tabela do "Guia rápido". Executar os testes necessários em célula de Hull até que se obtenha resultados de acordo com os parâmetros, ou seja, situação excelente.

Normalmente são observados dois tipos de contaminação nos banhos de níquel que são divididos em contaminação orgânica e inorgânica.

Como contaminação orgânica temos óleos, graxas, resíduos de massas de polimento, excesso ou decomposição de aditivos.

Como contaminação inorgânica podemos exemplificar os metais como cromo, cobre, ferro, zinco, chumbo, cálcio, e íons como amônio, nitratos, silicatos e etc.

Outra verificação que pode ser feita através de testes de célula de Hull é a existência de passivação da camada de níquel. Este ensaio está descrito no teste High-Low.

A seguir são citados os defeitos mais comuns para banhos de níquel brilhante que também podem ser observados na linha de produção e suas possíveis causas.

Guia rápido de testes e observações

Ap	arência	Situação / Causas	
	uel brilhante uniforme, o e brilho em toda ainel e com boa	Excelente.	
Baixo poder de j	penetração.	Baixo níquel metal.	
		Alto abrilhantador.	
		Presença de agentes oxidantes, resíduo de algur	n tratamento.
		Excesso de carga orgânica.	
		• pH fora da faixa.	
		Presença de Fe, Cu, Zn ou Cr6+.	
		Baixa temperatura.	
		Área anódica deficiente.	
		Deficiência de contato.	
		Mau dimensionamento da gancheira ou barrame	ento.
		Posicionamento inadequado das peças na ganch	neira.
		Distância anodo/catodo excessiva.	
Aspereza.		Sólidos em suspensão.	
		• pH alto.	
		Contaminação orgânica.	
		Excesso de abrilhantador.	
		Presença de Fe, Al, Ca.	
		Ácido bórico alto associado a baixa temperatura	1.
		Sacos anódicos furados.	
		Gancheira com revestimento deficiente e contate tos de Ni e Cr.	os com depósi-
		Filtração inadequada.	
		Densidade de corrente muito alta.	
		Agitação inadequada.	
		Pré-tratamento deficiente.	
Falta de brilho.		Baixo pH.	
		Baixo abrilhantador.	
		Baixa temperatura.	
		Baixa concentração de sais, principalmente clore	eto de níquel.

_____Manual Técnico

124

	 Contaminação metálica, isso se a opacidade for só na baixa densidade de corrente.
	• Deficiência na limpeza, na lavagem, etc.
	Deficiência no polimento, base, etc.
	Baixa área anódica.
	Agitação insuficiente.
Pittings e ou chuvisco.	Baixo molhador.
	Excesso de abrilhantador.
	Baixo níquel metal.
	Baixo ácido bórico.
	• pH muito alto ou muito baixo.
	• Presença de Fe, Ca, Cr ⁶⁺ .
	Contaminação com graxa e ou óleo ou contaminação orgânica
	Aeração pela bomba em banhos com agitação mecânica.
	Agitação inadequada.
	Deficiência de limpeza e ou lavagem.
	Sólidos em suspensão.
• Depósito duro, quebradiço, mu	Presença de contaminação orgânica.
tensionado.	Excesso de abrilhantador.
	Alto teor de cloreto de níquel.
	Baixo teor de ácido bórico.
	Baixo níquel metal, menos que 30 g/L.
	• Presença de Zn, Cu, Cd, Pb, Fe, Cr ⁶⁺ .
	Baixo nivelador.
Descascamento e ou Bolhas.	Excesso de abrilhantador.
	Baixo nivelador.
	Baixo ácido bórico.
	Contaminação orgânica.
	Presença de Cr ⁶⁺ .
	Pré-tratamento e lavagens deficientes.
	Passivação da camada anterior.
	Contato intermitente, interrupção de corrente.
	Porosidade no metal base causando retenção de solução.
	Neutralização inadequada da limpeza antes do banho de níquel.

 Mancha branca ou gravação. 	Elevada carga orgânica.	
	Excesso de abrilhantadores.	
	Incompatibilidade de abrilhantadores após conversão ou mistura de processo.	
	Falta de eletrólise após montagem ou tratamento oxidativo do banho.	
	Deficiência no pré-tratamento.	
Deficiência no nivelamento.	Baixo nivelador.	
	Baixo abrilhantador.	
	Baixo pH.	
	Presença de contaminação orgânica.	
	Baixa concentração de sais.	
	• Presença de Fe, Cu, Zn, Pb ou Cr ⁶⁺ .	
	Baixa temperatura.	
	Baixa camada.	
	Deficiência no polimento da base.	
	Distância anodo/catodo elevada.	
	Deficiência na agitação.	
Baixa eficiência anódica (redução da	Baixo cloreto.	
corrosão anódica).	Alto pH.	
	Excesso de resíduos nos sacos anódicos.	
	Deficiência de contato com gancho anódico.	
Baixa eficiência catódica (redução na	Excesso de abrilhantador.	
quantidade de níquel depositado).	Baixo teor de sais.	
	Excesso de carga orgânica.	
	Presença de Cr ⁶⁺ .	
	Presença de agentes oxidantes, resíduo de algum tratamento.	
	Baixa temperatura.	
	Baixa densidade de corrente.	
	Baixa área anódica.	
Depósito acastanhado.	Oxidação da base ferrosa através de depósito muito fino.	
Passivação da camada de níquel	Excesso de molhador ou abrilhantador.	
causando manchas no cromo.	Contaminação orgânica e ou metálica.	
	Tempo muito longo para transferência do níquel para o cromo.	
Depósito escuro nas áreas de baixa	Alto abrilhantador.	
densidade de corrente.	• Presença de Zn, Cu e Pb.	

Manual Técnico 126

	Altíssima contaminação orgânica.	
	Incompatibilidade dos aditivos após conversão.	
Aumento no consumo de aditivos.	Alto pH.	
	Temperatura elevada.	
	Baixa área anódica, ou baixa concentração de sais compensada por adição de aditivos.	
	Arraste elevado.	
• Queima.	Baixo níquel.	
	Baixa temperatura.	
	Contaminação orgânica.	
	Alto pH.	
	Presença de fosfatos ou nitratos.	
	Falha de agitação.	
	Alta densidade de corrente.	
	Insuficiente área anódica.	
• "Casca de laranja".	Baixo ácido bórico.	
	Alta contaminação de Fe.	
	Aeração pela bomba em banhos com agitação mecânica.	
	Excesso de alguns componentes do abrilhantador primário.	
Pitting na alta densidade de corrente.	Alto ácido bórico.	
	Excesso de abrilhantador primário.	

A próxima tabela mostra os efeitos de contaminantes metálicos e alguns íons, na maioria deles com teores máximos permitidos, bem como seus efeitos e indicação de remoção.

Aparência	Situação / Causas	Ações
Cobre Acima de 7 mg/L	Cinza nublado a preto na baixa. Poder de penetração reduzido. Níquel passivado.	Tratamento com 0,25 g/L de SurTec Renovate Br. Baixar o pH para 3,5 e fazer seletiva com 0,2 a 0,4 A/dm².
 Cobre Acima de 25 mg/L 	Perda de brilho. Aspereza. Depósito nodular. Perda de ductilidade.	
Zinco Acima de 10 mg/L	Recessos escuros.	1. Temporária – com adição de 0,5 a 0,8 mL/L de SurTec 850 Purificador.
Zinco Acima de 25 mg/L	Depósito quebradiço, rajado. Pittings quando o pH for maior de 4,0.	2. Tratamento com 0,25 g/L de SurTec Renovate Br. 3. Baixar o pH para 3,5 e fazer seletiva iniciando pela adição de 0,1 a 0,3 mL/L de H ₂ O ₂ 130 volumes; agitar durante 1 a 2 horas e em seguida proceder purificação seletiva com 0,2 a 0,4 A/dm².
• Ferro Acima de 25 mg/L	Coloração marrom nos sacos anódicos, filtros e etc. Depósito com aspereza, quebradiço, pittings, manchas brancas, fosco, nuvens. Redução do poder de penetração e estress.	1. Temporário - Adicionar 0,5 a 2,0 g/L de SurTec 843 Complexante. 2. Tratamento com 0,25 g/L de SurTec Renovate Br. 3. Elevar o pH para 5,5 a 6,0 e adicionar de 0,1 a 0,3 mL/L de H ₂ O ₂ 130 volumes; agitar durante 1 a 2 horas, deixar decantar e filtrar o banho.
Chumbo Acima de 10 mg/L	Depósito extremamente quebradiço. Aspereza. Camada com estrias. Depósito de cinza a preto na zona de baixa.	Baixar o pH entre 1,0 a 1,5 e fazer purificação seletiva usando 0,1 a 0,2 A/dm².
• Cromo Acima de 10 mg/L	Redução da eficiencia catódica de 5 a 10 %. Falta de depósito na baixa. Manchas cinzas após a cromação.	Tratamento com 0,6 g/L de SurTec Renovate Br. Adicionar de 0,1 a 0,5 g/L de metabissulfito de sódio, agitar. Elevar o pH acima de 4,2 para preciptar o Cr ³⁺ e filtrar o banho.
Cromo Acima de 50 mg/L	Perda da aderência, bolhas e manchas.	
Cromo Acima de 90 mg/L	Cessa a deposição.	
Cádmio Entre 100 a 500 mg/L	Causa depósitos laminados se a camada for superior a 5 µm. Redução do poder de cobertura subsequente de cromo. Depósito quebradiço, fosco a preto na baixa. Estrias e pittings.	Baixar o pH para 3,5 e fazer seletiva iniciando pela adição de 0,1 a 0,3 mL/L de H ₂ O ₂ 130 vol- umes; agitar durante 1 a 2 horas e em seguida proceder purificação seletiva com 0,2 a 0,4 A/dm².
Estanho Acima de 50 mg/L	Escurescido a preto na alta densidade de corrente. Stress.	Baixar o pH para 3,5 e fazer seletiva iniciando pela adição de 0,1 a 0,3 mI/L de H ₂ O ₂ 200 volumes; agitar durante 1 a 2 horas e em seguida proceder purificação seletiva com 0,2 a 0,4 A/dm².
 Cálcio Acima de 500 mg/L 	Aspereza.	Aumentar a temperatura para 80 °C, adicionar bifluoreto de amônio e filtrar.
Sódio - Potássio Acima de 25 g/L	Aspereza. Perda de resistência à cor- rosão. Manchas brancas acinzentadas. Porosidade. Rápido aumento do pH. Dureza.	Suspender as adições de compostos de sódio ou potássio tais como abrilhantadores, purificado- res etc. temporariamente.
• Fosfatos l g/L	Depósitos manchados, irregulares e algumas vezes pulverulentos, branco.	Adicionar perclorato de ferro equivalente a 3 vezes a quantidade de PO ₄ . Aumentar o pH para 5,0 com NiCO ₃ e filtrar.
Alumínio	Com pH 4,2 ou mais causa precipitação do Al(OH) ₃ , aspereza e pittings.	Tratamento com 0,25 g/L de SurTec Renovate Br. Aumentar o pH para 5,0 com NiCO ₃ e filtrar.

Manual Técnico 128

 Manganês 	Não interfere.	Codeposita com o níquel.
Magnésio	Não interfere.	Codeposita com o níquel.
Amônio Excesso	Depósito duro na alta. Cristalização de sulfato de níquel amoniacal com consequente aspereza. Depósito leitoso com manchas e perda de nivelamento.	Aquecer o banho até 65 °C e fazer seletiva de alta, usando 4,0 a 5,0 A/dm².
• Nitratos	 Redução do poder de penetração. Pittings. Diminuição da eficiência catódica (gases). Dureza. 	Baixar o pH para 3,5 e fazer seletiva de alta, usando 4,0 a 5,0 A/dm².
• Silicatos	Microporosidade. Manchas leitosas e estrias.	Filtração meticulosa. Verificar a fonte de con- taminação, lavagem deficiente, peças retendo desengraxante.
Arsênio	Depósito quebradiço, efeitos simi- lares ao zinco.	Seletiva usando 0,2 a 0,5 A/dm².

Tratamentos diversos para realização em laboratório

Com carvão para eliminação de contaminação orgânica muito pequena

- Adicionar 2,0 g/L de carvão ativo em pó e agitar, com a temperatura de 50 60 °C, durante 15 minutos.
- Filtrar em seguida.

Comentários:

 Este tratamento rápido simula uma filtração com carvão ativo em pó na bomba filtro.

Com carvão para eliminação de pequena contaminação orgânica

- Adicionar 5,0 g/L de carvão ativo em pó e agitar, com a temperatura de 50 60 °C, durante 1 hora.
- Deixar decantar e filtrar o banho.
- Após perfeita filtração verificar a necessidade de reposição de aditivos em testes de célula de Hull no laboratório.

Comentários:

- O tratamento deve ser feito em tanque reserva previamente limpo.
- O tempo de agitação, para produção deve ser de no mínimo 2 horas e se a agitação for muito deficiente pode se aumentar este tempo.

Com água oxigenada e carvão para eliminação de contaminação orgânica

- Baixar o pH para 3,0 a 3,5 unidades e adicionar de 1 a 2 mL/L de água oxigenada 130 volumes, com o banho na temperatura de 20 40 °C, e agitar durante 1 hora.
- Elevar a temperatura para 60 65 °C e adicionar de 5 a 10 g/L de carvão ativo em pó, agitar durante 2 horas.
- Deixar decantar e filtrar o banho.
- Após perfeita filtração verificar a necessidade de reposição de aditivos em testes de célula de Hull.

Comentários:

- O tratamento deve ser feito em tanque reserva previamente limpo.
- Os tempos de agitação para cada fase do tratamento devem ser duplicados para aplicação na produção, porém se a agitação for muito deficiente pode ser elevado.
- Importante manter a ordem de adição e a proporção de 5:1 (carvão: oxidante) para uma boa eficiência no tratamento, bem como obedecer aos tempos de agitação e temperatura para cada item.
- A escolha da quantidade de oxidante e carvão depende do nível de contaminação orgânica, ou seja, quanto maior a contaminação orgânica presente no banho, maiores as quantidades de oxidante e carvão.

Com permanganato e carvão para eliminação de contaminação orgânica

- Baixar o pH para 3,0 a 3,5 unidades, elevar a temperatura para 60 70 °C e somente depois adicionar de 1 a 2 g/L de permanganato de potássio. Agitar durante 1 hora mantendo esta temperatura.
- Adicionar 5 a 10 g/L de carvão ativo em pó, mantendo a temperatura entre 60 70
 °C e agitar durante 2 horas.
- Deixar decantar e filtrar o banho.
- Após perfeita filtração verificar a necessidade de reposição de aditivos em testes de célula de Hull.

Comentários:

- O tratamento deve ser feito em tanque reserva previamente limpo.
- Os tempos de agitação para cada fase do tratamento devem ser duplicados para aplicação na produção, porém se a agitação for muito deficiente pode se aumentar ainda mais.
- Importante manter a ordem de adição e a proporção de 5:1 (carvão: oxidante) para

____Manual Técnico

- uma boa eficiência no tratamento, bem como obedecer aos tempos de agitação e temperatura para cada item.
- A escolha da quantidade de oxidante e carvão depende do nível de contaminação orgânica, ou seja, quanto maior a contaminação orgânica presente no banho, maiores as quantidades de oxidante e carvão.

Com água oxigenada, permanganato e carvão para eliminação de forte contaminação orgânica

- Baixar o pH para 2,0 a 2,5 unidades e adicionar 2 mL/L de água oxigenada 130 volumes, com o banho na temperatura entre 20 - 40 °C, e agitar durante 1 hora.
- Elevar a temperatura para 60 70 °C e adicionar 2 g/L de permanganato de potássio.
 Agitar durante 1 hora mantendo esta temperatura.
- Adicionar 15 g/L de carvão ativo em pó, mantendo a temperatura entre 60 70 °C e agitar durante 2 horas, mantendo esta temperatura.
- Deixar decantar e filtrar o banho.
- Após perfeita filtração verificar a necessidade de reposição de aditivos em testes de célula de Hull.

Comentários:

- O tratamento deve ser feito em tanque reserva previamente limpo.
- Os tempos de agitação para cada fase do tratamento devem ser duplicados para aplicação na produção, porém se a agitação for muito deficiente pode se aumentar ainda mais.
- Importante manter as condições citadas acima para obter uma boa eficiência no tratamento.
- Este purificação pode ser adotada como tratamento programado com freqüência definida, como preventivo para eliminação de contaminação orgânica.

Com peróxido para eliminação de ferro.

- Elevar o pH entre 5,5 a 6,0 com carbonato de níquel e adicionar 0,1 a 0,3 mL/L de Água Oxigenada 130 volumes, na temperatura entre 20 40 °C, agitar durante 30 minutos.
- Elevar a temperatura para 55 60 °C. Agitar dutante 30 minutos e filtrar em seguida.

Comentários:

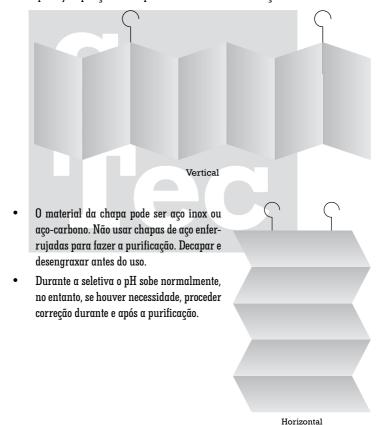
- Este é um tratamento rápido para remoção de pequenas quantidades de ferro.
- Cuidar para usar carbonato de níquel de alto grau de pureza.

Com peróxido e carvão para eliminação de contaminação de ferro em conjunto com contaminação orgânica

- Elevar o pH entre 5,5 a 6,0 com carbonato de níquel e adicionar de 1 a 2 mL/L de água oxigenada 130 volumes, com o banho na temperatura de 20 - 40 °C, e agitar durante 1 hora.
- Elevar a temperatura para 60 65 °C e adicionar de 5 a 10 g/L de carvão ativo em pó, agitar durante 2 horas.
- Deixar decantar e filtrar o banho.
- Após perfeita filtração verificar a necessidade de reposição de aditivos em testes de célula de Hull.

Comentários:

- Cuidar para usar carbonato de níquel de alto grau de pureza.
- O tratamento deve ser feito em tanque reserva previamente limpo.
- Os tempos de agitação para cada fase do tratamento devem ser duplicados para aplicação na produção, porém se a agitação for muito deficiente pode se aumentar ainda mais.
- Importante manter as condições citadas acima, principalmente a proporção de
 5:1 (carvão: oxidante) para uma boa eficiência no tratamento.
- A escolha da quantidade de oxidante e carvão depende do nível de contaminação orgânica, ou seja, quanto maior a contaminação orgânica presente no banho, maiores as quantidades de oxidante e carvão.


Purificação através de chapa seletiva para eliminação de contaminantes metálicos.

- Baixar o pH para 3,0 a 3,5 unidades e, na temperatura de trabalho, colocar a chapa seletiva no barramento catódico para fazer a purificação.
- Aplicar um flash de níquel a 4 A/dm² para niquelar a chapa durante 5 a 10 minutos e depois baixar para a densidade de corrente de acordo com o metal a ser removido.
- Dar prosseguimento na purificação até que a chapa saia com a coloração da camada de níquel. Pode também ser feita inspeção de tempos em tempos e quando a chapa apresentar muito escura pode-se aumentar a densidade de corrente para 4 A/dm² e niquelar até que a chapa fique clara, principalmente nas áreas de menor densidade de corrente e então baixar a corrente e reiniciar o processo de purificação, cuidando para que o pH esteja entre 3,0 a 3,5 unidades.

Comentários:

 Importante manter um sistema de agitação, no caso o mesmo usado para operação com o banho, para renovação da solução frente à superfície catódica.

- Para a remoção de cobre e zinco, através de seletiva, de banhos que operam normalmente com "purificadores" ou "mascaradores", antes da seletiva usar de 0,1 a 0,3 mL/L de água oxigenada 130 volumes, seguido de agitação, antes da purificação.
- As dimensões de uma chapa seletiva deverão ser determinadas em função do
 volume do tanque a ser tratado, área anódica e a capacidade do retificador
 utilizado seguindo, porém o princípio de que cada "gomo da chapa" forme um
 triângulo eqüilátero, ou seja, seus lados e a abertura frontal deverão ter a mesma
 medida, conforme mostra o desenho abaixo.
- Podem ser usadas chapas no sentido vertical ou horizontal, sendo que para banhos com agitação mecânica as chapas verticais são mais recomendadas favorecendo uma melhor agitação da solução frente a sua superfície. Qualquer que seja a posição da chapa é recomendada uma filtração contínua do banho.

Guia de problemas: causas e soluções

Banhos de cromo

SurTec 872 SurTec 874

SurTec 875

Executar todos os teste em uma célula de Hull de 267 mL. Usar anodos de chumbo/estanho (93/7%) e catodos de latão niquelados.

Instantes antes da cromação, niquelar o painel de célula de Hull com um banho de níquel brilhante padrão, por exemplo, processo SurTec 856 ou com um banho de níquel brilhante isento de contaminantes metálicos e orgânicos, com 2 A durante 10 minutos. Lavar, ativar com ácido sulfúrico a 5 % v/v, lavar novamente e cromar. Estas lavagens devem ser feitas com água limpa ou água de torneira.

Ao mesmo tempo aquecer o eletrólito do cromo para a temperatura de 40-45 °C. Cromar o painel recém niquelado também em célula de Hull com 5 A durante 3 minutos. O "ripple" do retificador deve ser menor que 5 %. Lavar o painel com água de torneira e secar com ar comprimido.

Examinar o painel conforme a tabela do "Guia rápido". Executar os testes necessários em célula de Hull até que se obtenha resultados de acordo com os parâmetros, ou seja, situação excelente.

Outra verificação que pode ser feita qualitativamente em testes de célula de Hull é a presença de cloretos. No caso deve-se depositar cromo diretamente sobre painel de latão previamente desengraxado e ativado, na temperatura de 40-45 °C, usando 5 A durante 5 minutos.

Para banhos isentos de cloreto têm-se como resultado depósito de cromo, que pode apresentar penetração menor do que comparado ao teste realizado sobre painel niquelado, porém sem ataque ao latão.

Para banhos que contém cloreto, o ataque começa a ser percebido no verso do painel, em áreas de baixíssima densidade de corrente, isso implica em baixa concentração de cloreto. Este ataque pode ganhar proporções maiores, vindo a atacar a frente do painel, o que implica em alto cloreto, maior que o limite tolerável.

A seguir são citados os defeitos mais comuns para banhos de cromo que também podem ser observados na linha de produção e como proceder para saná-los, no entanto, após a tabela prática tem-se mais detalhes sobre estas situações.

_Manual Técnico

Guia rápido de testes e observações

• Aparência	Situação / Causas	Ações		
Depósito de cromo brilhante com penetração de 70 a 80%, isento de queimas, nem manchas marrons, nem tão pouco cinzas.	Excelente.	• Nenhuma.		
 Queima nas áreas de alta densidade de corrente. 	Teor baixo do ácido crômico.	Aumentar o teor de ácido crômico para 250-300 g/L.		
	Temperatura muito baixa.	Aumentar temperatura para 40-45 °C.		
	Falta de catalisador.	Adicionar de 1 a 5 g/L de SurTec 872 Catalisador a 45-50 °C, eletrolisar e fazer um novo teste, repetir se for necessário; ou adicionar o SurTec 872 Catalisador de acordo com a análise, a 45-50 °C, e a seguir eletrolisar o banho.		
	Teor de sulfato baixo.	Adicionar de 0,1 a 0,5 mL/L de ácido sulfúrico e fazer um novo teste, repetir se for necessário; ou adicionar o ácido sulfúrico de acordo com a análise, e a seguir eletrolisar o banho.		
	Densidade de corrente muito alta.	Corrigir a densidade de corrente.		
	Distância anodo catodo pequena.	Corrigir.		
	Disposição irregular da peça na gancheira.	Corrigir.		
	Mal dimensionamento da gancheira.	Corrigir.		
	Anodos de comprimento inadequado ou mal distribuídos.	Corrigir.		
Baixa penetração.	Temperatura maior que 50 °C.	Abaixar a temperatura para 40-45 °C.		
	Teor de sulfato alto ou relação CrO ₃ /SO ₄ baixa.	Analisar e corrigir a concentração de CrO ₃ . Para a precipitação do sulfato, adicionar 0,4g/L de carbonato de bário e fazer um novo teste, repetir se for necessário; ou adicionar o carbonato de acordo com a análise, e a seguir eletrolisar o banho.		
	Falta de catalisador.	Adicionar de l a 5 g/L de SurTec 872 Catalisador a 45-50 °C, eletrolisar e fazer um novo teste, repetir se for necessário; ou adicionar o SurTec 872 Catalisador de acordo com a análise, a 45-50 °C, e a seguir eletrolisar o banho.		
	Cromo trivalente alto.	Eletrolisar com alta área de anodos e baixa área de catodos com alta densidade de corrente.		
	Contaminação metálica.	Reduzir por diluição ou por purificação eletrolítica em célula cerâmica.		
	Níquel passivo.	Certificar passivação do níquel através do teste High-Low e se necessário tratar o níquel.		

	Passivação dos anodos.	Retirar os anodos do banho e remover o filme de cromato com SurTec Pb Cleaner ou escovamento
	Densidade de corrente muito baixa.	Corrigir.
	Mal dimensionamento da gancheira.	Corrigir
	Excesso de peça.	Corrigir.
	Mal contato ou barramentos oxidados.	Corrigir.
	Disposição irregular da peça na gancheira.	Corrigir.
	Deficiência de área anódica.	Corrigir para 2:1 anodo:catodo.
	Teor de sulfato baixo.	Adicionar de 0,1 a 0,5 mL/L de ácido sulfúrico e fazer um novo teste, repetir se for necessário. Ou adicionar o ácido sulfúrico de acordo com a análise, e a seguir eletrolisar o banho.
Boa penetração do cromo porém com manchas marrons iridescentes na área de baixa densidade de corrente.	Falta de catalisador.	Adicionar de 1 a 5 g/L de SurTec 872 Catalisador a 45-50 °C, eletrolisar e fazer um novo teste, repetir se for necessário; ou adicionar o SurTec 872 Catalisador de acordo com a análise, a 45-50 °C, e a seguir eletrolisar o banho.
	Deficiência de ativação.	Trocar ativação. Usar o SurTec Ativador Cr, prin- cipalmente quando se tem muito abrilhantador no níquel.
Manchas cinzas ou	Temperatura baixa.	Aumentar a temperatura para 40-45 °C.
brancas, foscas da alta até a média densidade de corrente.	Níquel passivo.	Certificar passivação do níquel através do teste High-Low e se necessário tratar o níquel.
de contenie.	Teor baixo de catalisador.	Adicionar de 1 a 5 g/L de SurTec 872 Catalisador a 45-50 °C, eletrolisar e fazer novo teste, repetir se for necessário; ou adicionar o SurTec 872 Catalisador de acordo com a análise, a 45-50 °C, e a seguir eletrolisar o banho.
Depósito azulado.	Contaminação de ferro maior que 15 g/L. Mais comum em cromo duro.	Não existem métodos simples para redução do ferro. Pode ser feito por diluição do banho ou purificação por eletrólise em célula cerâmica.
Nuvens brancas com redução do poder de cobertura.	Presença de cloreto.	Precipitar com óxido ou carbonato de prata conforme análise do cloreto. Eletrolisar o banho com proporção de anodo:catodo de 10:1 com ddc anódica de 2,5 A/dm².
Depósito escuro.	Contaminação metálica	Usar SurTec Ativador Cr, principalmente quando se tem muito abrilhantador no níquel.
	Cromo trivalente alto.	Eletrolisar com alta área de anodos e baixa área de catodos com densidade de corrente normal de trabalho.
Banho com coloração marrom escura.	Cromo trivalente alto.	Eletrolisar com alta área de anodos e baixa área de catodos com alta densidade de corrente.

_____Manual Técnico

136

Maiores informações

Relação

Uma alta relação crômico/sulfato pode produzir um painel com boa penetração, mas apresentará iridescência (arco-íris) no verso da chapa e, dependendo do seu valor apresentará também na frente, na área de baixa densidade de corrente. Uma pequena adição de ácido sulfúrico ou de sal catalisador, se necessário em célula de Hull permitirá determinar a quantidade correta a ser adicionada ao banho.

Quando a relação crômico/sultúrico for baixa o painel resultante do teste em célula de Hull, mostrará um baixo poder de penetração, e pode apresentar também mancha esbranquiçada na baixa densidade, porém não no cromo e sim no níquel. Neste caso, podem ser feitas pequenas adições de carbonato de bário para corrigir o sulfato do banho. As adições de carbonato devem ser cautelosas na sua quantidade, pois é constatado que este pode ter efeito retardado, devido talvez a formação de um envelope de cromato de bário envolvendo o carbonato, retardando a precipitação do sulfato. Uma eletrólise após a adição de carbonato é recomendada para acelerar esta reação.

Cloretos

A presença de cloreto em um banho de cromo é constatada no painel de latão conforme dito anteriormente.

O painel ficando claro leitoso e atacado indica a contaminação do banho com cloretos, pois um banho sem cloretos não mostra sinais de ataque ao painel. Traços de cloro (0,01 g/L) atacará apenas o verso. Conforme aumenta essa contaminação o ataque atinge também a frente do painel, e ao mesmo tempo, cai a penetração do banho. Uma pequena adição de óxido de prata na célula precipitará o cloreto presente e teremos um painel sem ataque e com boa penetração. Uma vez obtida essa condição poderá ser feito o teste no painel niquelado. Como o banho de cromo esta em teste, não se deve usar painel de níquel brilhante passivado. Sobre o painel niquelado deve ser obtido um depósito de cromo que cobre 70 a 80 mm do painel. Considerar que a análise química do banho indica com exatidão a relação crômico-sulfato e composição do banho.

Pode ser feito o cálculo para a eliminação dos cloretos, através do óxido de prata, tendo-se como referência que 0,033 q de óxido de prata removem 0,01 q de íon cloreto.

Remoção de íon cloreto em banhos de cromo

Contaminação por íon cloreto em banhos de cromo pode causar redução do poder de cobertura, manchas na baixa densidade de corrente e ataque ao metal base, quando a sua concentração exceder de 0,05 g/L (50 ppm).

Como procedimento de rotina, o íon cloreto pode ser removido pela precipitação de cloreto de prata, através da adição de óxido de prata (Ag_2O) na solução. A quantidade de óxido de prata a ser adicionado é calculada pela seguinte fórmula:

$g/L Cl^{-} x 3.3 = g/L de Ag_{2}O necessários$

O íon cloreto também pode ser removido por eletrólise, particularmente quando a concentração esta relativamente elevada. Em laboratório verificamos que ao se fazer uma eletrólise no banho de cromo, com uma relação anodo:catodo de 10:1, enquanto se mantém a densidade de corrente anódica por volta de 2,5 A/dm², ou densidade de corrente catódica de 25 A/dm² irá remover o alto cloreto transformando-o em gás cloro que é volátil. A temperatura da solução tem muito pouca influência nessa remoção.

Como exemplo, uma solução contendo 100 ppm de cloreto foi eletrolisada durante uma hora nas condições indicadas acima, houve uma redução para 20 ppm de cloreto.

Fazendo-se esta eletrólise adequadamente, usando-se a relação correta de anodo:catodo, e 2,5 A/dm² a remoção de cloretos é eficaz e também reoxida o cromo trivalente em hexavalente.

Interferência do cloreto na análise do catalisador

Ao fazer o teste de catalisador com a mola de alumínio atenção para não incorrer em afirmações como alto catalisador por exemplo. Isto denota que em muitos casos, pelo íon cloreto estar elevado, este também ataca o alumínio, causando uma perda elevada de peso, o que confundirá os resultados. Portanto, nesse caso deve-se fazer um teste ou análise para verificação do teor do íon cloreto e viabilidade ou não de realizar esta análise.

Contaminações metálicas

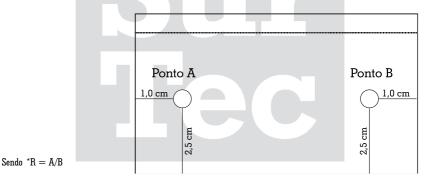
Geralmente é difícil determinar as impurezas metálicas com precisão, pois o painel mostra apenas uma redução no poder de cobertura com o aumento das contaminações, tendo-se em conta que a composição do banho está correta.

Todavia, altas contaminações com cobre e zinco podem ser observadas se o painel for antes niquelado na célula de Hull a 2 A por 5 minutos. Como o depósito de níquel na área de baixa densidade de corrente é muito fino ele será dissolvido pelos banhos de cromo contaminados com cobre ou zinco. A diluição ou aumento da concentração do banho são soluções para esses casos. Outra possibilidade é a purificação através de eletrólise em célula cerâmica.

Não é necessário lembrar que uma lavagem deficiente após os banhos de níquel, resultará em contaminação do banho de cromo com sulfato, cloreto, níquel e ácido bórico. Todas essas impurezas causarão redução no poder de penetração do banho de cromo e as suas eliminações são problemáticas.

A presença de contaminantes metálicos aumenta a resistividade do banho à passagem de corrente. Os limites máximos para os contaminantes metálicos mais comumente encontrados em banhos de cromo são cromo trivalente 7 g/L; ferro 7 g/L; cobre 3 g/L; níquel 3 g/L e zinco 2 g/L, sendo que, a somatória dos íons bivalentes deve ser menor que 8 g/L e a somatória dos íons trivalentes deve ser menor que 14 g/L.

____Manual Técnico


Guia de problemas: causas e soluções

Banhos de zinco alcalino SurTec 704

Antes de consultar a lista abaixo, verificar se a temperatura, a densidade de corrente e as concentrações dos componentes dos banhos estão dentro dos parâmetros corretos de trabalho. Testes em célula de Hull podem ser realizados com 267 mL de banho e com painéis de aço devidamente desengraxados usando corrente igual a 1 A, com tempo deposição por 10 minutos para verificação de brilho e penetração. O painel depositado poderá ser ativado em ácido nítrico a 0,5% v/v por 5 segundos, lavado e seco com ar quente.

Determinação do SurTec 704 I Aditivo

O processo permite a avaliação da faixa de concentração do SurTec 704 I Aditivo no banho, realizando testes com painéis de aço devidamente desengraxados em célula de Hull usando corrente igual a 1 A, com deposição por 15 minutos. Após a eletrodeposição o painel deve ser bem lavado e seco, não devendo ser ativado em ácido, para posterior medição da espessura de camada conforme descrito abaixo.

Unda.

A = Alta densidade de corrente

B = Baixa densidade de corrente

*R = Relação ou razão entra alta e baixa densidade de corrente

Parâmetros de trabalho ideais para melhor distribuição de camada	Para banhos rotativos	$1.6 < {}^{\star}\mathbf{R} < 2.2$
	Para banhos parados	1,8 < *R < 2,2

Se *R estiver abaixo da faixa mínima temos indicação de excesso do SurTec 704 I Aditivo.

Se *R estiver acima da faixa máxima temos indicação de falta do SurTec 704 I Aditivo.

Problemas	Causas	Correções
Brilho uniforme em todα extensão.	Eletrólito Ok.	Manter as orientações de manutenção recomendadas.
Se *R estiver abaixo da faixa mínima	Adições do SurTec 704 I acima do estipulado no BT	Reduzir temporariamente as adições do SurTec 704 I em 75%.
Se *R estiver acima da faixa máxima	Consumo excessivo do SurTec 704 I	Adicionar 0,5 a 1 mL/L do SurTec 704 I
Pouca penetração, com baixo poder de dispersão.	Faltα do SurTec 704 I Aditivo.	Efetuar teste em célula de Hull para determinação do SurTec 704 I Aditivo e fazer as adições necessárias.
	Falta do SurTec 704 Condicionador.	Testar em célula de Hull adições do SurTec 704 Condicionador entre 2 a 5 mL/L.
	Excesso de zinco metal Baixo teor de soda	Reduzir Reforçar
Pouca penetração, com brilho deficiente da média para baixa densidade de corrente.	Falta do SurTec 704 II Abrilhantador.	Testar em célula de Hull adições do SurTec 704 II Abrilhantador entre 0,2 a 0,5 mL/L.
Depósito nublado com aparência irregular em função de arraste de pré- tratamento, deficiência de limpeza e sais de baixa	Pré-tratamento deficiente.	Melhorar pré-tratamento. Obs: o pré- tratamento no painel de célula de Hull é muito importante para um bom teste.
qualidade, inclusive com falta de resposta ao SurTec 704 I Aditivo.	Falta do SurTec 704 Condicionador.	Testar em célula de Hull adições do SurTec 704 Condicionador entre 2 a 5 mL/L.
Formação de depósito grosseiro em alta densidade de corrente.	Super dosagem do SurTec 704 II Abrilhantador.	Reduzir temporariamente em 75% a dosagem do SurTec 704 II Abrilhantador.
	Falta do SurTec 704 I Aditivo.	Efetuar teste em célula de Hull para determinação do SurTec 704 I Aditivo e fazer as adições necessárias.
Estrias na zona de alta densidade de corrente	Contaminação orgânica por arraste de óleos e desengraxantes	Adicionar 1 a 3 g/l do SurTec 704 purificador especial. Reagir por 1 h com agitação. Filtrar com carvão na bomba.
Aparecimento de micro bolhas.	Excesso do SurTec 704 II Abrilhantador.	Reduzir temporariamente em 75% a dosagem do SurTec 704 II Abrilhantador.
Bolhas na superfície da peça, logo após beneficiamento.	Teor de zinco muito alto.	Analisar e adequar para a faixa de trabalho.
	Falta do SurTec 704 Condicionador.	Testar em célula de Hull adições do SurTec 704 Condicionador entre 2 α 5 mL/L
	Pré-tratamento deficiente.	Melhorar pré-tratamento. Obs: o pré- tratamento no painel de célula de Hull é muito importante para um bom teste.
Bolhas na superfície das peças com ocorrência após armazenamento.	Desequilíbrio de aditivos.	Fazer os testes em célula de Hull e adequar.
	Excesso de carga orgânica por deficiência de ativação.	Verificar o pH da ativação e corrigir entre 0,9 a 1,0.

____Manual Técnico 140

Problemas		Causas	Correções
			Filtrar o banho com carvão ativo em pó na bomba.
		Qualidade do metal base, como por exemplo, porosidade excessiva.	Redefinir o processo.
Baixa eficiência de corrente e falta de depósito na área de alta densidade de corrente.		Super dosagem do SurTec 704 I Aditivo.	Suspender as adições do SurTec 704 I Aditivo.
Falta de depósito em área de baixa densidade de corrente.		Impurezαs de Cr ⁶⁺ .	Adicionar um agente redutor, dithionito de sódio, (hidrossulfito de sódio), conforme teste em célula de Hull.
Aspereza.		Adição de óxido de zinco sem dissolução adequada.	Filtrar o banho e conferir que o óxido de zinco esteja totalmente dissolvido antes da adição ao banho e testar em célula de Hull adições do SurTec 704 Condicionador entre 2 a 5 mL/L.
	<u></u>	Dissolução dos anodos dentro do próprio tanque de trabalho.	Filtrar o banho e até que seja providenciado um tanque de dissolução para reposição do teor metálico, usar sacos de anodos de polipropileno.
Camadas de cromato descoloridas.		Cromatizante fora de concentração.	Verificar cromatizante e ativação ácida. Verificar o pH da ativação e corrigir entre 0,9 a 1,0.
		Ativação ácida fraca	Filtrar o banho com carvão ativo em pó na bomba.
	П	Excesso de carga orgânica.	Verificar fontes de contaminação metálica; eletrolisar o banho com baixa densidade de corrente.
		Contaminação metálica no banho.	Tratar o banho com 1 g/L de zinco em pó.
Nuvens cinza na baixa densidade de corrente.	е	Contaminação com chumbo acima de 1 ppm.	Testar em célula de Hull adições do SurTec 701 Purificador até 0,5 mL/L.

Guia de problemas: causas e soluções

Banhos de zinco ácido base KCl

SurTec 752 B SurTec 757 B SurTec 758 B

Problemas	Causas	Correções
Bolhas e ou aderência deficiente	Pré-tratamento inadequado	Melhorar pré-tratamento
	Alto abrilhantador	Reduzir adições
	Contaminação orgânica	Tratar com carvão ativo
	Queima na alta	Ajustar corrente ou
	densidade de corrente.	concentração de metal
	Contaminação com Fe	Tratar com H ₂ O ₂ e filtrar
	pH elevado	Ajustar com ĤĈl
Descoloração	Contaminação por : Fe, Cu, Cd	Tratar com H ₂ O ₂ , para Fe, e zinco em
		pó, para Cu, Čď
	Lavagem deficiente	Melhorar lavagem
	Tempo muito curto nos cromatos	Aumentar o tempo nos mesmos
Fosco na alta densidade de corrente	Baixo teor de cloretos	Analisar, e corrigir
	Baixo abrilhantador	Ajustar por célula de Hull
	Temperatura elevada	Aumentar a refrigeração
Falta total de brilho	Baixo ácido Bórico	Analisar e corrigir
	Baixo abrilhantador	Ajustar por célula de Hull
	Temperatura elevada	Aumentar a refrigeração
	pH muito alto ou baixo	Ajustar com HCl, NH ₄ OH ou KOH
	Pré-tratamento deficiente	Melhorar pré-tratamento
	Contaminação orgânica	Tratar com carvão ativo
	Falta de aditivo	Ajustar por célula de Hull
Aspereza	Partículas de anodos em	Filtrar a solução, acertar a área e a
	suspensão	densidade de corrente anódica, usar
		sacos anódicos
	Limpeza deficiente	Melhorar limpeza e lavagens
Estrias ou manchas nas peças	Pré-tratamento inadequado	Melhorar a limpeza, a ativação e as
		lavagens
	Contaminação orgânica	Tratar com carvão ativo
	Lavagem deficiente após zincagem	Melhorar a pós-lavagem
Mudanças bruscas no pH	Arraste de ácidos da ativação	Melhorar as pré-lavagens
Alto consumo de sαis (ZnCl ₂ , KCl, etc)	Perdas excessivas por arraste	Melhorar o escorrimento antes das lavagens
	Sacos anódicos entupidos	Trocar os sacos anódicos

Problemas	Causas	Correções
Baixo teor metálico	Baixa área anódica	Aumentar a área
	Baixo teor de cloretos	Analisar e corrigir
	pH muito elevado	Ajustar o pH
Falta de deposição na	Contaminação com Pb e outros	Fazer seletiva, e tratar
baixa densidade de corrente	metais pesados, como Sb, As, etc.	com zinco em pó
Queima total na alta	Metal muito baixo	Adicionar ZnCl ₂
lensidαde de corrente	Corrente muito alta	Baixar a corrente
Tublado na alta densidade de corrente	Contaminação orgânica	Filtrar com carvão ou tratar
	Aditivo baixo	Ajustar por Célula de Hull
Formação de óleo na	Excesso de aditivo	Verificar as adições
superfície do banho	Cloreto de potássio > 220 g/L	Analisar e corrigir
Pontos pretos, revelando 1 furação do tambor rotativo	Contaminação com Fe	Tratar com ${ m H_2O_2}$ e Filtrar

Guia de problemas: causas e soluções

Banhos de zinco alcalino com cianeto

SurTec 722 B SurTec 724 B SurTec 725 B

Problemas	Causas	Correções
Baixo poder de penetração	Baixa relação Zn/CN, cianeto de sódio insuficiente.	Adicionar cianeto de sódio.
	Baixo teor de Soda cáustica	Adicionar soda cáustica.
	Excesso de abrilhantador	Tratar com carvão ativo.
	Cr ⁶⁺ no banho.	Adicionar 0,05 g/L de hidrossulfito de sódio.
	Formação de carbonatos	Aumentar a relação e aumentar a área anódica.
	Densidade de corrente não	Aumentar a área anódica.
	uniforme para a área anódica.	
Bolhas e	Limpeza insuficiente.	Melhorar pré-tratamento.
descascamento	Excesso de abrilhantador.	Tratar com carvão ativo.
	Decapagem insuficiente.	Aumentar a concentração do ácido.
	Metal base especial (ex. alto	Diminuir a relação da solução.
	carbono, ou ligas contendo Cr,	Adicionar fluoreto no decapante ácido.
	Pb, Mo, Ti, Mn).	Usar chapa seletiva.
	Contaminação com:	Adicionar purificador.
	Cr, Mg, Mo, Ti, Pb.	
Depósito avermelhado, com nuances	Mistura de contaminação:	Fazer chapa seletiva e adicionar
cinza ou preto	Sn, Mo, Cd, Hg, Pb, Ni.	purificador.
	Excesso de soda cáustica.	Parar de adicionar ou diluir o banho.
	Contaminação orgânica.	Tratamento com carvão ativo.
	Alta ou baixa temperatura	Manter o banho com a temperatura na
	do banho.	faixa de 18 - 30 °C.
	Alta: precipitação branca.	
	Baixa: precipitação cinza.	
Superfície manchada	Metal base com problemas.	Atenção para o pré-tratamento.
	Pré-tratamento pobre.	Atenção em particular para o ácido.
	Pós-tratamento deficiente.	Melhorar lavagem.
Baixo poder de deposição	Relação Alta.	Aumentar o zinco.
	Baixo teor de soda.	Aumentar a soda.
	Baixa concentração do banho.	Analisar o banho, e ajustar a
		concentração.

Problemas	Causas	Correções
	Baixa área anódica ou	Aumentar a área anódica e limpar o
	passivação anódica.	anodo com ácido clorídrico.
	Baixa temperatura.	Manter a temperatura na faixa de 18 - 35 °C.
	Carbonato alto.	Precipitar e remover o carbonato.
	Densidade de corrente	Verificar os contatos dos anodos.
Alto consumo de Abrilhantador	Carbonato alto.	Precipitar e remover o carbonato.
	Temperatura de trabalho	Manter a temperatura na faixa
	elevada.	de 18 - 35 °C.
Depósito duro ou sem brilho	Excesso de abrilhantador.	Tratamento com carvão ativo.
	Contaminação metálica.	Fazer chapa seletiva.
	Relação alta.	Aumentar o zinco.
Depósito escuro após imersão	Contaminação de Cu, Ni ou Pb.	Tratar o banho com zinco em pó, ou
em ácido nítrico		fazer chapa seletiva.
Precipitação branca	Baixo teor de soda e cianeto.	Analisar e corrigir.
aderida ao anodo	Densidade de corrente alta.	Ajustar densidade de corrente.
	Baixa temperatura.	Manter a temperatura na faixa de 18 - 35 °C.
Anodo escuro e voltagem alta	Área anódica baixa.	Aumentar área anódica.
	Baixo teor de soda.	Analisar e corrigir.
	Contaminação com:	Fazer chapa seletiva e tratar
	Cu, Ni, Cd e Ag.	com zinco em pó.
	Baixa concentração.	Analisar e ajustar.
	Baixa relação.	Adicionar cianeto de sódio.

Sequência para aplicação de cromo decorativo sobre ferro

(As sequências aqui indicadas são orientativas, podendo ser modificadas em casos específicos)

Etapa	Produto	Concentração	Temperatura	Tempo	d.d.c.
1. Desengraxante emulsificante					
(opcional).	SurTec R - EM	Pronto para uso	Ambiente	2 - 15 min	
2. Lavagem dupla.		· ·	Ambiente		
3. Desengraxante químico	SurTec 185/186 B	60 - 80 g/L	65 - 100 °C	2 - 15 min	
4. Lavagem dupla			Ambiente		
5. Decapagem ácida	Ácido Clorídrico	30 - 50% v/v	Ambiente α	1 - 15 min	
	SurTec 426 B	1 - 10% v/v	40 °C		
6. Lavagem dupla			Ambiente		
7. Desengraxante eletrolítico	SurTec 179 B	50 - 80 g/L	20 - 50 °C	1 - 2 min	
8. Lavagem eupla			Ambiente		
9. Níquel Watts	Sulfato de Níquel Solução 600 g/L	415 - 460 mL/L	55 - 60 °C	5 - 10 min	3 - 4 A/dm ²
	Cloreto de Níquel Solução 800 g/L	75 - 115 mL/L			
	Ácido bórico	45 - 50 g/L			
	SurTec NP-A ou NP-M	2 - 5 mL/L			
10. Lavagem dupla			Ambiente		
11. Ātivação ácida	Ácido sulfúrico	3 - 5% v/v	Ambiente	15 - 30 s	
12. Lavagem (opcional)			Ambiente		
13. Cobre ácido	Sulfato de cobre	200 - 220 g/L	Ambiente	30 min	4 A/dm ²
	Ácido sulfúrico	55 - 70 g/L			
	Ácido clorídrico	0,2 mL/L			
	SurTec 868 B Parte 1	l mL/L			
	SurTec 868 B Parte 2	6 mL/L			
	SurTec 868 B Parte 3	0,2 mL/L			
14. Lavagem dupla			Ambiente		
15. Ātivação ácida	Ácido sulfúrico	3 - 5% v/v	Ambiente	15 - 30 s	
16. Lavagem (opcional)			Ambiente		
17. Níquel brilhante	Sulfato de níquel solução 600 g/L	415 - 460 mL/L	55 - 60 °C	2 - 15 min 1 - 15 min 1 - 2 min 5 - 10 min 15 - 30 s 30 min	4,5 A/dm ²
	Cloreto de níquel solução 800 g/L	70 - 90 mL/L			
	Ácido bórico	45 - 50 g/L			
	SurTec 858 Fast Parte 2 Básico	30 mL/L.			
	SurTec 858 Fast Parte 1 Abrilh.	0,75 mL/L			
	SurTec 858 NP-A ou NP-M	2 - 5 mL/L			
18. Agua de recuperação (Ni)			Ambiente		
19. Lavagem dupla			Ambiente		
20. Ātivação crômica	Ácido crômico	30 - 100 g/L	Ambiente	15 - 30 s	
21. Cromo decorativo	SurTec 872 Sal	250 g/L	41 °C	3 min	12 A/dm ²
	Ácido sulfúrico	l g/L			
22. Água de recuperação (Cr)			Ambiente		
23. Lavagem dupla			Ambiente		
24. Secagem			60 °C		

Sequência para aplicação de cromo decorativo sobre ferro*, latão e cobre

Etapa	Produto	Concentração	Temperatura	Tempo	d.d.c.
1. Desengraxante químico	SurTec 123/65	50 - 90 g/L	70 - 90 °C	2 - 15 min	-
2. Desengraxante eletrolítico	SurTec 123/65 ou SurTec 171-B	50 - 80 g/L ou 65 - 85 g/L	60 - 70 °C ou 70 - 80 °C	1 - 5 min	3 - 6 A/dm ²
3. Lavagem dupla	-	-	Ambiente	-	-
4. Ātivação ácida	Ácido sulfúrico	5 - 10% v/v	Ambiente	15 - 30 seg	-
5. Lavagem (opcional)	-	-	Ambiente	-	-
6. Níquel Watts	Sulfato de Níquel Solução 600 g/L Cloreto de Níquel Solução 800 g/L Ácido bórico SurTec NP-A ou SurTec NP-M	415 - 460 mL/L 75 - 115 mL/L 45 - 50 g/L 2 - 5 mL/L	55 - 60 °C	5 - 10 min	3 - 4 A/dm²
7. Níquel semi brilhante (opcional)	Sulfato de Niquel Solução 600 g/L Cloreto de Niquel Solução 800 g/L Ácido Boñco SurTee 854-B Parte I SurTee 854-B Parte II SurTee NP-M agitação ar ou SurTee NP-M agitação mecânica	500 mL/L 65 mL/L 45 - 50 g/L 7,0 mL/L 0,5 mL/L 3,0 mL/L 3,0 mL/L	55 - 60 °C	10 - 20 min	3 - 5 A/dm ²
8. Niquel brilhante	Sulfato de Niquel Solução 600 g/L Cloreto de Niquel Solução 800 g/L Ácido bórico SurTec 858 Fast Parte 2 Básico SurTec 858 Parte 3 SurTec NP-A ou SurTec NP-M	415 - 460 mL/L 70 - 90 mL/L 45 - 50 g/L 30 mL/L 0,75 mL/L 2 - 5 mL/L	55 - 60 °C	10 - 15 min	3 - 5 A/dm ²
9. Água de recuperação (Ni)	-	-	Ambiente	-	-
10. Lavagem dupla		-	Ambiente	-	-
11. Ātivação crômica	Ácido crômico	30 - 100 g/L	Ambiente	15 - 30 seg	-
12. Cromo decorativo	SurTec 872 Sal Ácido sulfúrico	250 g/L 1 g/L	41 °C	3 min	12 A/dm ²
13. Água de recuperação (Cr)	-	-	Ambiente	-	-
14. Lavagem dupla	-	-	Ambiente	-	-
15. Secagem	-	_	60 °C	_	-

^(*) Peças de ferro oxidadas deverão sofrer decapagem ácida prévia.

Sequência para aplicação de cromo decorativo sobre zamac e latão

Etapa	Produto	Concentração	Temperatura	Tempo	d.d.c.
1. Desengraxante químico	SurTec 123/65	50 - 70 g/L	70 - 90 °C	2 - 15 min	
2. Desengraxante eletrolítico	SurTec 123/65	50 - 70 g/L	60 - 70 °C	1 - 5 min	3 - 6 A/dm ²
3. Lavagem dupla			Ambiente		
 Ativação ácida 	SurTec 479 B (sal ácido)	30 - 50 g/L	Ambiente	15 - 30 s	
Lavagem dupla			Ambiente		
6. Cobre alcalino cianídrico	Cianeto de cobre	56 - 85 g/L	60 - 80 °C	5 - 10 min	3 - 8 A/dm ²
	Cianeto de potássio total	97 - 147 g/L			
	Hidróxido de potássio	30 g/L			
	SurTec 866 B Make Up	50 mL/L			
	SurTec 866 B Parte 1	7 mL/L			
	SurTec 866 B Parte 2	5 mL/L			
7. Lavagem dupla			Ambiente		
8. Ativação ácida	Ácido sulfúrico	3 - 5% v/v	Ambiente		
9. Lavagem (opcional)			Ambiente		
10. Cobre ácido	Sulfato de cobre	200 - 220 g/L	23 - 25 °C	30 min	4 A/dm ²
	Ácido sulfúrico	55 - 70 g/L			
	Ácido clorídrico	0,2 mL/L			
	SurTec 868 B Parte 1	l mL/L			
	SurTec 868 B Parte 2	6 mL/L			
	SurTec 868 B Parte 3	0,2 mL/L			
ll. Lavagem dupla			Ambiente		
12. Ătivação ácida	Ácido sulfúrico	3 - 5 v/v	Ambiente		
13. Lavagem (opcional)			Ambiente		
14. Níquel brilhante	Sulfato de Níquel Solução 600 g/L	415 - 460 mL/L	55 - 60 °C	10 - 15 min	3 - 5 A/dm ²
	Cloreto de Níquel Solução 800 g/L	70 - 90 mL/L			
	Ácido bórico				
	SurTec 858 Fast Parte 2 Básico	40 - 50 mL/L			
	SurTec 858 Fast Parte 1 Abrilh.	0,75 mL/L			
	SurTec NP-A ou NP-M	2 - 5 mL/L			
15. Água de recuperação (Ni)			Ambiente		
16. Lavagem dupla	4		Ambiente		
17. Ativação crômica	Ácido crômico	30 - 100 g/L	Ambiente	15 - 30 s	
18. Cromo decorativo	Ácido sulfúrico	l g/L			
	SurTec 872 Sal	250 g/L	41 °C	3 min	12 A/dm ²
19. Água de recuperação (Cr)			Ambiente		
20. Lavagem dupla			Ambiente		
21. Secagem			60 °C		

Sequência para aplicação de cromo decorativo sobre ABS

Etapa	Produto	Concentração	Temperatura	Tempo	d.d.c.
1. Mordente ou condicionador	Ácido crômico	400 g/L	66 - 70 °C	12 min	
	Ácido sulfúrico	400 g/L			
	SurTec 960 (molhador)	0,5 - 1 mL/L			
2. Água de recuperação (Cr)			Ambiente		
3. Lavagem dupla			Ambiente		
4. Neutralização	ŞurTec 965	100 mL/L	Ambiente	2 min	
	Ácido clorídrico	100 mL/L			
5. Lavagem			Ambiente		
6. Ativador ácido	Ácido clorídrico	100 mL/L	Ambiente		
7. Ativador paládio	SurTec 966	15 mL/L	Ambiente	2 min	
8. Lavagem dupla (sem movimentação)	Ácido clorídrico 37 °Bè	300 mL/L	Ambiente		
9. Acelerador	SurTec 969	6 - 8 a/L	Ambiente	2 min	
5. Acelerador	Ácido sulfúrico	12 - 15 mL/L	Ambiente	2 111111	
10. Lavagem dupla (sem movimentação)	Acido sulfurico	12 - 10 IIIL/L	Ambiente		
11. Níquel químico	SurTec 835 Parte 1	55 mL/L	25 - 35 °C	7 - 10 min	
11. Hiquer quimico	SurTec 835 Parte 2	50 mL/L	20 00 0	, 10 11111	
12. Lavagem dupla	builet ood Farte 2	OO IIID/D	Ambiente		
13. Níquel Watts	Sulfato de níquel solução 600 g/L	415 - 480 mL/L	55 - 60 °C	0,5 α 2 min	0,5 A/dm ²
• • • • • • • • • • • • • • • • • • • •	Cloreto de níquel solução 800 g/L	75 - 115 mL/L			4 - 5 V
	Ácido bórico	45 - 50 g/L			
	SurTec NP-A	2 - 5 mL/L			
14. Lavagem dupla			Ambiente		
15. Ātivação ácida	Ácido sulfúrico	5% v/v	Ambiente	30 s	
16. Cobre ácido	Sulfato de cobre	200 - 220 g/L	23 - 25 °C	30 min	4 A/dm ²
	Ácido sulfúrico	55 - 60 g/L			
	Åcido clorídrico	0,2 mL/L			
	SurTec 868 B Parte 1	l mL/L			
	SurTec 868 B Parrte 2	6 mL/L			
17.1	SurTec 868 B Parte 3	0,2 mL/L			
17. Lavagem dupla	* : 1 1// :	100 7 //	Ambiente		
18. Ātivação ácida 19. Lavagem (opcional)	Ácido sulfúrico	100 - mL/L	Ambiente Ambiente		
20. Níquel semi brilhante	Sulfato de níquel solução 600 g/L	500 - mL/L	55 - 60 °C	10 20 min	3 - 5 A/dm ²
zo. Niquei seini brimanie	Cloreto de níquel solução 800 g/L	65 mL/L	33 - 00 C	10 - 20 111111	3 - 3 A/GIII
	Ácido bórico	45 - 50 g/L			
	SurTec 854-B Parte I	7.0 mL/L			
	SurTec 854-B Parte II	0.5 mL/L			
	SurTec NP-A agitação ar ou	3,0 mL/L			
	SurTec NP-M agitação mecânica	3.0 mL/L			
21. Níquel brilhante	Sulfato de níquel solução 600 g/L	415 - 460 mL/L	55 - 60 °C	10 - 15 min	3 - 5 A/dm ²
1	Cloreto de níquel solução 800 g/L	70 - 90 mL/L			
	Ácido bórico	45 - 50 g/L			
	SurTec 858 Fast Parte 2 Básico	30 mL/L			
	SurTec 858 Fast Parte 3	0,75 mL/L			
	SurTec NP-A	2 - 5 mL/L		2 min 1 min 2 min 2 min 7 - 10 min 0,5 a 2 min 30 s 30 min 10 - 20 min 2 min	
22. Níquel microporoso	Sulfato de níquel solução 600 g/L	460 - 500 mL/L	55 - 60 °C	2 min	0,5 - 6 A/dm ²
	Cloreto de níquel solução 800 g/L	65 - 70 mL/L			
	Ácido bórico	45 - 50 g/L			
	SurTec 859 Parte 1	l mL/L			
	SurTec 859 Parte 2	20 mL/L			
	SurTec 859 MP SurTec NP-A	4 mL/L 4 mL/L			
23. Água de recuperação	Surrec NP-A	4 ML/L	Ambiente		
24. Lavagem dupla			Ambiente		
25. Ātivacāo crômica	Ácido crômico	30 - 100 a/L	Ambiente	15 - 30 e	
26. Cromo decorativo	SurTec 872 Sal	250 g/L	41 °C		12 A/dm ²
	Ácido sulfúrico	1 g/L		ii	1221/4111
		- 3/11	Ambiente		
27. Água de recuperação (Cr)					
27. Água de recuperação (Cr) 28. Lavagem dupla			Ambiente		

Sequência para aplicação de cromo decorativo sobre alumínio

Etapa	Produto	Concentração	Temperatura	Tempo	d.d.c.
1. Desengraxante químico	SurTec Al 30	30 - 70 g/L	60 - 80 °C	1 - 3 min	
2. Lavagem dupla		, , , , , , , , , , , , , , , , , , ,	Ambiente		
3. Ativação ácida	SurTec Prepalloy	60 - 120 g/L	Ambiente	1 - 2 min	
,	Ácido nítrico 36 °Bé	50% v/v			
	Ácido sulfúrico 66 °Bé	25% v/v			
4. Lavagem dupla			Ambiente		
5. Imersão em zincato	SurTec 652 B	100%	15 - 25 °C	0,5 - 2 min	
6. Lavagem dupla			Ambiente		
7. Ativação ácida	Ácido nítrico	50% v/v	Ambiente	l min	
8. Lavagem dupla			Ambiente		
9. Imersão em zincato	SurTec 652 B	100%	15 - 25 °C	l min	
10. Lavagem dupla			Ambiente	l min	
11. Níquel barreira	SurTec 836 Parte 1	150 mL/L	20 - 35 °C	3 - 10 min	
	SurTec 836 Parte 3	70 mL/L			
12. Lavagem dupla			Ambiente		
13. Cobre ácido	Sulfato de cobre	200 - 220 g/L	20 - 30 °C	30 min	4 A/dm ²
	Ácido sulfúrico	55 - 70 g/L			
	Ácido clorídrico	0,2 mL/L			
	SurTec 868 B Parte 1	l mL/L			
	SurTec 868 B Parte 2	6 mL/L			
	SurTec 868 B Parte 3	0,2 mL/L			
14. Lavagem dupla			Ambiente		
15. Ativação ácida	Ácido sulfúrico	3 - 5% v/v	Ambiente	15 - 30 s	
16. Lavagem (opcional)			Ambiente		
17. Níquel semi brilhante	Sulfato de níquel solução 600 g/L	500 mL/L	55 - 60 °C	10 - 20 min	3 - 5 A/dm ²
	Cloreto de níquel solução 800 g/L	65 mL/L			
	Ácido bórico	45 - 50 g/L			
	SurTec 854-B Parte I	7.0 mL/L			
	SurTec 854-B Parte II	0,5 mL/L			
	SurTec NP-A agitação ar ou	3,0 mL/L			
	SurTec NP-M agitação mecânica	3,0 mL/L		1 - 3 min 1 - 2 min 0.5 - 2 min 1 min 1 min 1 min 3 - 10 min 30 min	
18. Níquel brilhante	Sulfato de níquel solução 600 g/L	415 - 460 mL/L	55 - 60 °C	10 - 15 min	3 - 5 A/dm ²
	Cloreto de níquel solução 800 g/L	70 - 90 mL/L	- T		
	Ácido bórico	45 - 50 g/L			
	SurTec 858 Fast Parte 2 Básico	40 mL/L			
	SurTec 856 Abrilhantador	0,5 mL/L			
	SurTec 850 D Ductilizer	0.5 mL/L			
	SurTec 850 Purificador	0.5 mL/L			
	SurTec NP-M (mecânica)	6 mL/L			
	SurTec NP-A (cr)	4 mL/L			
19. Água de recuperação (Ni)			Ambiente		
20. Lavagem dupla			Ambiente		
21. Ativação crômica	Ácido crômico	30 - 100 g/L	Ambiente	15 - 30 s	
22. Cromo decorativo	SurTec 872 Sal	250 g/L	41 °C		12 A/dm ²
	Ácido sulfúrico	l g/L		·	1011/4111
23. Água de recuperação (Cr)		- 9/	Ambiente		
24. Lavagem dupla			Ambiente		
25. Secagem			60 °C		
20. Decayem	T	1	00 0		I

A alternativa verde

Chrom[®]tierung

SurTec 680

Cromatizante trivalente para zinco, que oferece vantagens extraordinárias.

- Tanto a solução, quanto a camada são isentas de cromo hexavalente e outros produtos cancerígenos ou venenosos.
- A proteção contra a corrosão excede as normas exigidas para cromatização amarela.
- As camadas resistem a altas temperaturas (desidrogenização), sem perda de qualidade.
- O revestimento verde-iridescente bem claro é a característica inconfundível do Chrom/tierung
- Ligas de zinco podem ser cromatizadas.
- As cores originais se esvanecem mediante lubrificação e selamento (lacas e vernizes).

Sequência para aplicação de zinco em processo alcalino isento de cianetos com passivações trivalentes

Etapa	Produto	Concentração	Temperatura	Tempo	d.d.c.
1. Desengraxante químico	SurTec 185 B	50 - 75 g/L	65 - 100 °C	2 - 15 min	
2. Lavagem dupla		0	Ambiente		
3. Decapagem ácida	Ácido clorídrico	30 - 50% v/v	Ambiente a 40 °C	1 - 15 min	
. 0	SurTec 426 B	1 - 10% v/v do Ácido			
4. Lavagem dupla			Ambiente		
5. Desengraxante eletrolítico	SurTec 179 B	50 - 80 g//L	20 - 50 °C	1 - 2 min	4 - 6 A/dm ²
6. Lavagem dupla			Ambiente		
7. Neutralização alcalina	Soda cáustica	70 g/L	Ambiente	3 - 5 min	
	SurTec 704 Condicionador	5 - 10 mL/L			
8. Zinco sem cianeto	SurTec Solução AZ	160 mL/L	26 - 30 °C		
	Soda cáustica a 50% p/p	95 mL/L		Depende da	0,5 - 6 A/dm ²
	SurTec 704 I Aditivo	10 mL/L		camada	
	SurTec 704 II Abrilhantador	2 mL/L			
	SurTec 704 Condicionador	10 mL/L			
9. Lavagem dupla			Ambiente		
10. Ativação ácida	Ácido nítrico	1 - 1,5% v/v	Ambiente	5 - 10 s	
11. Lavagem			Ambiente		
	A - Passivação azul trivalen	te com aplicação de	selante		
12-A. Passivação azul trivalente	SurTec 662 ou	5 - 12% v/v	15 - 30 °C	15 - 60 s	
,	SurTec 664 ou	5 - 15% v/v	15 - 30 °C	15 - 60 s	
	SurTec 667	15 - 12% v/v	15 - 30 °C	2 - 15 min C 1 - 15 min 1 - 2 min 3 - 5 min Depende da camada 5 - 10 s	
13-A. Lavagem dupla			Ambiente		
14-A. Imersão em selante	SurTec 552	5 - 15% v/v	Ambiente	5 - 15 s	
15-A Secagem			60 - 80 °C		
	B - Passivação trivalente verde	iridescente de camac	la espessa		
12-B. Passivação verde trivalente	SurTec 680	12,5% v/v	60 °C	60 - 90 s	
13-B. Recuperação			Ambiente	30 s	
14-B. Lavagem dupla			Ambiente		
15-B Secagem			70 - 100 °C		
	C - Passivação trivalente pre	eta com aplicação de	selante		
12-C. Passivação preta trivalente	SurTec 694	15% v/v	60 °C	45 - 120 s	
13-C. Recuperação			Ambiente	30 s	
14-C. Lavagem dupla			Ambiente		
15-C. Imersão em selante	SurTec 555 S	15 - 30% v/v	20 - 30 °C	15 - 20 s	
16-C Secagem			70 - 120 °C		

CARACTERISTICAS

- Tres vezes mais duro que o Zn puro
- Excelente distribuição de camada
- Maior estabilidade do eletrólito
- Combina eletroquimicamente com o Al
- Alta resistência térmica até 160°C
- Sem periculosidade com fragilização por hidrogênio
- Resiste a todas substâncias hidráulicas comuns
- Não libera mais níquel metal que o aço Inox 316, tipo ASTM 316, conforme ensaio Scania em 2006

BENEFICIOS

- Melhor comportamento tribológico
- Ideal para peças de geometria complexa
- Processo de simples controle
- Enorme redução da corrosão por contato
- Ótimo para peças na região do motor
- Indicado para peças temperadas
- Alta resistência quimica
- Minima periculosidade com dermatites

SurTec do Brasil Ltda. 11 4334.7316 • 11 4334.7317 central@br.surtec.com www.surtec.com.br

Seqüência para aplicação da liga zinco-ferro com passivações trivalentes

Etapa	Produto	Concentração	Temperatura	Tempo	d.d.c.
1. Desengraxante químico	SurTec 185 B	50 - 75 g/L	65 - 100 °C	2 - 15 min	
2. Lavagem dupla			Ambiente		
3. Decapagem ácida	Ácido clorídrico	30 - 50% v/v	Ambiente - 40 °C	1 - 15 min	
	SurTec 426 B	1 - 10% v/v do ácido			
4. Lavagem dupla			Ambiente		
5. Desengraxante eletrolítico	SurTec 179 B	50 - 80 g/L	20 - 50 °C	1 - 2 min	4 - 6 A/dm ²
6. Lavagem dupla			Ambiente		
7. Neutralização alcalina	Soda cáustica	5 - 10%	Ambiente	3 - 5 min	
8. Zinco - Ferro sem cianeto	SurTec Solução AZ	200 mL/L	20 - 30 °C	Depende da	0,8 - 4 A/dm ²
	Soda cáustica	65 g/L		camada.	
	SurTec 714 Parte I	4 - 8 mL/L			
	SurTec 714 Fe-C	7 - 11 mL/L			
	SurTec 714 C Complexante	60 - 80 mL/L			
	SurTec 714 Supressor	0,55 - 0,75 mL/L			
9. Lavagem dupla			Ambiente		
10. Ativação ácida	Ácido nítrico	Até pH de 0,8 - 1,0	Ambiente	5 - 10 s	
ll. Lavagem			Ambiente		
	A - Passivação trivalente verde	iridescente de cama	da espessa		
12-A.Passivação verde trivalente	SurTec 680	12,5% v/v	60 °C	60 s	
13-A.Recuperação			Ambiente		
14-A. Lavagem dupla			Ambiente		
15-A Secagem			70 - 100 °C		
	B - Passivação trivalente pre	eta com aplicação de			
12-B. Passivação preta trivalente	SurTec 695 Parte 1	25% v/v	60 °C	45 - 60 s	
	SurTec 695 Parte 2	4% v/v			
13-B. Recuperação			Ambiente		
14-B. Lavagem dupla			Ambiente		
15-B. Imersão em selante	SurTec 555 S	15 - 30% v/v	20 - 30 °C	15 - 20 s	
16-B Secagem			70 - 100 °C		

Sequência para aplicação da liga zinco-níquel com passivações trivalentes

Etapa	Produto	Concentração	Temperatura	Tempo	d.d.c.
1. Desengraxante químico	SurTec 185 B	50 - 75 g/L	65 - 100 °C	2 - 15 min	
2. Lavagem dupla			Ambiente		
3. Decapagem ácida	Ácido clorídrico	30 - 50% v/v	Ambiente - 40 °C	1 - 15 min	
	SurTec 426 B	1 - 10% v/v do ácido			
4. Lavagem dupla			Ambiente		
5. Desengraxante eletrolítico	SurTec 179 B	50 - 80 g/L	20 - 50 °C	1 - 2 min	4 - 6 A/dm ²
6. Lavagem dupla			Ambiente		
7. Neutralização alcalina	Soda cáustica	5 - 10%	Ambiente	3 - 5 min	
8. Zinco-Níquel sem cianeto	SurTec Solução AZ	130 - 145 mL/L	20 - 25 °C	Depende da	0,5 - 8 A/dm ²
-	Soda cáustica	76 – 92 g/L		camada	
	SurTec 716 I Aditivo	10 mL/L			
	SurTec 716 II Abrilhantador	l mL/L			
	SurTec 716 Fonte de Níquel	35 mL/L			
	SurTec 716 C Complexante	40 mL/L			
9. Lavagem dupla			Ambiente		
	A - Passivação tri	valente azul índigo			
10-A. Passivação azul trivalente	SurTec 680	12,5% v/v	60 °C	60 s	
11-A. Recuperação			Ambiente	30 s	
12-A. Lavagem dupla			Ambiente		
13-A. Secagem			70 - 100 °C		
	B - Passivação trivalente pro	eta com aplicação de	selante		
12-B. Passivação preta trivalente	SurTec 697	9 - 11% v/v	21 - 25 °C	20 - 40 s	
13-B. Lavagem dupla			Ambiente		
14-B. Imersão em selante	SurTec 555 S	15 - 30% v/v	20 - 30 °C	15 - 20 s	
15-B. Secagem			70 - 120 °C		

Seqüência para aplicação de cromo duro sobre aço

Etapa	Produto	Concentração	Temperatura	Tempo	d.d.c.
1. Desengraxante químico	SurTec 185 B	50 - 75 g/L	65 - 100 °C	2 - 15 min	
2. Desengraxante eletrolítico	SurTec 126	40 - 90 g/L	60 - 70 °C	1 - 5 min	4 - 6 A/dm ²
3. Lavagem dupla			Ambiente		
4. Ātivação ácida	Ácido sulfúrico	5% v/v	Ambiente	15 - 30 s	
5. Lavagem dupla			Ambiente		
6. Ataque anódico	Ácido crômico	120 g/L	55 - 60 °C	30 - 60 s	30 - 40 A/dm ²
	Ácido sulfúrico	1,2 g/L			
7. Cromo duro sem fluoreto	SurTec 875 A Make up	170 mL/L	50 - 65 °C	l μm/h α	35 - 80 A/dm ²
	Ácido sulfúrico	2,4 g/L		60 A/dm ²	
	Ácido oxálico	5,6 g/L			
8. Água de recuperação (Cr)			Ambiente		
9. Lavagem dupla			Ambiente		
10. Secagem			60 °C		

Sequência para aplicação de estanho sobre ferro e latão

Etapa	Produto	Concentração	Temperatura	Tempo	d.d.c.
1. Desengraxante químico	SurTec 123/65	50 - 90 g/L	70 - 90 °C	2 - 15 min	
2. Desengraxante eletrolítico	SurTec 123/65 ou	50 - 80 g/L	60 - 70 °C	1 - 5 min	3 - 6 A/dm ²
	SurTec 171B	65 - 85 g/L	70 - 80 °C		
3. Lavagem dupla			Ambiente		
4-A. Decapagem ácida (para ferro)	Ácido clorídrico	30 - 50% v/v	Ambiente	1 - 15 min	
ou	SurTec 426 B	1 - 10% (do volume do Ácido)			
4-B. Ātivação ácida (para latão)	Ácido sulfúrico	3 - 5% v/v			
5. Lavagem dupla			Ambiente	15 - 30 s	
6. Níquel Watts	Sulfato de níquel solução 600 g/L	415 - 460 mL/L	Ambiente		
(opcional para ferro)	Cloreto de níquel solução 800 g/L	75 - 115 mL/L	55 - 60 °C	5 - 10 min	3 - 4 A/dm ²
	Ácido bórico	45 - 50 g/L			
	SurTec NP-A ou NP-M	2 - 5 mL/L			
7. Lavagem dupla			Ambiente		
8. Ātivação ácida	Ácido sulfúrico	3 - 5% v/v	Ambiente		
9. Lavagem (opcional)			Ambiente		
10. Estanho ácido	SurTec Tin Sol	65 - 80 mL/L	Ambiente		
	Àcido sulfúrico	100 mL/L	Ambiente	15 - 30 min	0,5 - 3 A/dm ²
	SurTec 821 B Montagem 1	25 mL/L			
	SurTec 821 B Montagem 2	6 mL/L			
	SurTec 821 B Manutenção	5 mL/L			
11. Lavagem dupla			Ambiente		
12. Neutralização em	SurTec 123/65	20 - 50 g/L	Ambiente		
solução alcalina			Ambiente	15 - 30 s	
13. Lavagem dupla			Ambiente		
14. Secagem			60 °C		

Métodos de análises de banhos galvânicos

1- Banho de cobre alcalino cianídrico

1.1 - Cobre metal

- 1. Pipetar 2 mL da amostra para erlenmeyer de 250 mL.
- 2. Adicionar 1 q de persulfato de amônio P.A.
- 3. Adicionar 20 mL de água destilada.
- 4. Adicionar 5 mL de ácido nítrico P.A. concentrado.
- 5. Aquecer durante 10 minutos para desprendimento de fumos brancos. Esfriar.
- 6. Adicionar 10 mL de hidróxido de amônio P.A. concentrado. Esfriar.
- 7. Adicionar I mI, de indicador PAR.
- 8. Titular com solução EDTA 0,1 M até a coloração verde.

Cálculo : mL gastos EDTA 0,1M x fc x 3,1785 = g/L de Cu o

1.2 - Cianeto de cobre

Cálculo : g/L de Cu 0 x 1,41 = g/L de CuCN

1.3 - Cianeto de sódio livre ou cianeto de potássio livre

- 1. Pipetar 10 mL da amostra para erlenmeyer de 250 mL.
- 2. Adicionar 10 mL de iodeto de potássio P.A. a 10 %.
- 3. Titular com nitrato de prata 0,1 N até a primeira turbidez.

Cálculo: mL gastos AgNO, 0,1 N x fc x 0,98 = g/L de NaCN livre

Cálculo: mL gastos $AgNO_3$ 0,1 N x 1,3 = g/L de KCN livre

1.4 - Soda cáustica ou potassa cáustica

- 1. Pipetar 10 mL da amostra para erlenmeyer de 250 mL.
- 2. Adicionar 10 mL de cianeto de sódio P.A. a 10 %.
- 3. Adicionar 0,5 mL de indicador índigo carmim.
- Titular com solução de ácido sulfúrico 1N até mudança de coloração de verde para azul.

Cálculo : mL gastos H_2SO_4 l N x fc x 4,0 = g/L de NaOH

Cálculo : mL gastos H_2SO_4 1 N x fc x 5,61 = g/L de KOH

1.5 - Carbonato de sódio ou carbonato de potássio

- 1. Pipetar 10 mL da amostra em um béquer de 200 mL.
- 2. Adicionar 50 mL de água destilada.
- 3. Adicionar de 20 a 30 mL de cloreto de bário P.A. a 15 % p/v.
- Filtrar o precipitado do banho em papel de filtro.
- Lavar o béquer com água destilada a quente, até não dar reação do filtrado com nitrato de prata.
- 6. Retirar o papel filtro com o precipitado e colocar num erlenmeyer de 500 mL junto com 200 mL de água destilada a quente.
- 7. Adicionar 6 gotas de alaranjado de metila modificado.
- 8. Titular com solução de ácido sulfúrico 1 N até coloração rosa.

Cálculo : mL gastos de H_2SO_4 l N x fc x 5,3 = g/L de $N\alpha_2CO_3$

ou

mL gastos de H_2SO_4 1 N x fc x 6,91 = g/L de K_2CO_3

2- Banho de cobre ácido

2.1 - Cobre metal

- 1. Pipetar 2 mL da amostra para erlenmeyer de 250 mL.
- 2. Adicionar 50 mL de água destilada.
- 3. Adicionar 2 mL de solução de hidróxido de amônio P.A. a 40 % (até azul escuro transparente).
- 4. Adicionar 1 g de indicador murexida.
- 5. Titular com solução de EDTA 0,1M até a coloração violeta.

Cálculo : mL gastos EDTA 0,1M x fc x 3,1785 = g/L de Cu $^{\circ}$

2.2 - Sulfato de cobre

Cálculo: $g/l Cu^{\circ} \times 3.92 = g/L de CuSO_{\downarrow}$

2.3 - Ácido sulfúrico

- 1. Pipetar 1 mL da amostra para um erlenmeyer de 250 mL.
- 2. Adicionar 50 mL de água destilada.
- 3. Adicionar 6 gotas de azul de bromofenol.
- 4. Titular com solução de hidróxido de sódio 0,1 N até a coloração azul.

Cálculo : mL gastos NaOH 0,1 N x fc x 4,9 = g/L de H_2SO_4

2.4 - Cloreto (via úmida)

- 1. Pipetar 25 mL da solução para um béquer de 200 mL.
 - Obs: tratar a solução problema com carvão antes da pipetagem, para a eliminação do cloro residual.
- 2. Adicionar 30 mL de água destilada.
- 3. Adicionar 20 mL de solução de ácido nítrico P.A. a 50 % v/v.

- 4. Adicionar de 2 a 3 gotas de nitrato de prata 0,1 N até turbidez.
- Titular imediatamente com solução de nitrato de mercúrio 0,01 N agitando constantemente até que desapareça a turbidez.

$$\begin{array}{ccc} \text{C\'alculo}: & \frac{\text{mL gastos de Hg(NO}_3)_2 \text{ 0,01 N x fc x 355}}{\text{mL da al\'aquota}} = \text{ppm de Cl}^- \\ \end{array}$$

2.5 - Determinação de íons cloreto (eletrodo de prata)

- 1. Pipetar 20 mL da amostra em um béquer de 250 mL.
- 2. Adicionar 50 mL de água destilada.
- 3. Adicionar 0,5 mL de ácido nítrico P.A. concentrado, sob agitação magnética.
- 4. Preparar o eletrodo de prata com o marcador na escala mV.
- Titular com nitrato de prata 0,02 N, de 0,5 em 0,5 mL, anotando as leituras a cada 0,5 mL.

Obs: A primeira leitura será sem adição de AgNO, 0,02 N (zero).

Cálculo:

Exemplificando

$$0 - 187$$

$$0.5 - 190$$

$$1.0 - 194$$

$$1.5 - 198$$

$$> 205 - 198 = 7$$

$$2.0 - 205$$
] $E_1 = 40 - 7 = 33$

$$> 245 - 205 = 40$$

$$2.5 - 245$$
] $E_2 = 40 - 23 = 17$

$$> 268 - 245 = 23$$

$$3.0-268$$
] $E_3 = 33 + 17 = 50$

$$V_1 = 2.0$$

onde:

- (E1): Subtração da maior diferença encontrada com o valor acima.
- (E₂): Subtração da maior diferença com o valor abaixo.
- (E₂): Soma das diferenças.
- (V,): mL gastos AgNO, 0,02 N anterior na maior diferença de milivoltagem.

$$egin{aligned} \mathbf{V}_{\mathrm{eq}} &= \mathbf{fc}_{\mathrm{AgNO3}} \, \mathbf{x} \, [\ \mathbf{V}_{_{1}} \, + \, \underbrace{\mathbf{0.5} \, \mathbf{x} \, \mathbf{E}_{_{1}}}_{\mathbf{E}_{_{3}}} \] \\ \mathbf{V}_{\mathrm{eq}} \, \mathbf{x} \, \mathbf{35.5} &= \mathbf{mg/L} \, \, \mathbf{de} \, \, \mathbf{fons} \, \, \mathbf{cloreto} \end{aligned}$$

3- Banhos de níquel

3.1 - Níquel metal

- 1. Pipetar 2 mL do banho para erlenmeyer de 250 mL.
- 2. Adicionar 50 mL de água destilada.
- 3. Adicionar 10 mL de hidróxido de amônio P.A.
- 4. Adicionar l g de murexida.
- 5. Titular com solução de EDTA 0,1 M até a coloração violeta.

Cálculo : mL gastos EDTA 0,1 M x fc x 2,9345 = g/L de Ni $^{\circ}$

3.2 - Cloreto de níquel

- 1. Pipetar 2 mL do banho para erlenmeyer de 250 mL.
- 2. Adicionar 50 mL de água destilada.
- 3. Adicionar 10 mL de cromato de sódio P.A. a 10%.
- 4. Titular com nitrato de prata 0,1 N até viragem para marrom avermelhado.

Cálculo : mL gastos $AgNO_3$ 0,1 N x fc x 5,943 = g/L de $NiCl_2$. 6 H_2O

3.3 - Acido bórico

- Pipetar 2 mL do banho para erlenmeyer de 250 mL.
- 2. Adicionar 5 gotas de púrpura de bromocresol.
- 3. Acertar o pH com a adição de hidróxido de sódio 0,1N até cor azul.
- 4. Adicionar 10 mL de sorbitol P.A. α 70 %.
- 5. Titular com solução de hidróxido de sódio 0,1 N até a coloração azul.

Cálculo : mL gastos NaOH 0,1 N x fc x 3,092 = g/L de H_3BO_3

3.4 - Sulfato de níquel

Cálculo : [g/L Ni $^{\circ}$ - (0,247 x g/L NiCl $_{\!_{2}}$.6H $_{\!_{2}}$ O)] x 4,79 = g/L de NiSO $_{\!_{4}}$.7H $_{\!_{2}}$ O

Carga orgânica em banhos de níquel

A - Descrição

- 1. Pipetar 10 mL do banho para erlenmeyer de 500 mL.
- 2. Adicionar 50 mL de água destilada.
- 3. Adicionar 5 mL de ácido sulfúrico P.A. a 50 % v/v.
- Aquecer a solução a 50 °C e titular com permanganato de potássio 0,1 N até coloração marrom permanente. Anotar como "a".
- Quando não mais desaparecer a coloração adicionar 5 mL de excesso de permanganato de potássio e titular inversamente com tiossulfato de sódio 0,1 N. Anotar como "b".

B - Cálculos

mL gastos de KMn 0_4 0,1 N x 0,316 = g/L de KMn 0_4 necessários para proceder tratamento para eliminação de contaminação orgânica em banhos de níquel.

4- Banho de cromo

4.1 - Ácido crômico

- Pipetar 10 mL da amostra, transferir para balão volumétrico de 500 mL acertando o volume até o menisco com água destilada.
- 2. Pipetar 10 mL da amostra diluída para erlenmeyer de 250 mL.
- 3. Adicionar 100 mL de água destilada.
- 4. Adicionar 10 mL de bifluoreto de amônio P.A. a 5 % p/v.
- 5. Adicionar 30 mL de ácido clorídrico P.A. a 50 % v/v.
- 6. Adicionar 10 mL de iodeto de potássio P.A. a 10 % p/v.
- 7. Adicionar 1 mL de solução de amido a 1 % p/v.
- 8. Titular com solução de $Na_2S_2O_3$ 0,1 N até a cor esverdeada.

Cálculo: mL gastos de Na,S,O, 0,1 N x fc x 16,66 = g/L de CrO,

4.2 - Sulfato (centrífuga "Kocour")

- 1. Pipetar 10 mL da amostra em tubos fatorados.
- 2. Adicionar 5 mL de ácido clorídrico 18,4% v/v em cada tubo.
- 3. Agitar muito bem.
- 4. Centrifugar a 1.000 rpm por 1 minuto.
- 5. Fazer a leitura do resíduo em cada tubo (L,).
- 6. Adicionar 5 mL de cloreto de bário 15% p/v.
- 7. Agitar muito bem.
- 8. Deixar descansar por 2 minutos.
- 9. Centrifugar a 1.000 rpm por 1 minuto.
- 10. Fazer a leitura da quantidade de precipitado presente (L_2).

Cálculo:

A menor divisão lê-se como 0,02; e também $(L_2-L_1)=L$

Através de cálculo

(L) x fc do tubo x $15 = g/L de H_2SO_4$

Através de gráfico

Definir o valor de (L) e verificar através do gráfico a concentração de sulfato em g/L.

4.3 - Sulfato (método gravimétrico)

- 1. Pipetar 10 mL do banho original e filtrar para um béquer de forma alta de 300 mL.
- 2. Adicionar 75 mL da mistura redutora para banhos de cromo e aquecer suavemente durante 30 minutos evitando que a reação torne-se violenta.
- Adicionar 80 mL de água destilada e 20 mL de solução de cloreto de bário P.A. a 10%.
- Levar novamente à chapa quente, mantendo a suspensão aquecida, mas não em ebulição, durante 1 hora.
- Deixar o precipitado sedimentar e testar o líquido claro com uma ou duas gotas de solução de cloreto de bário P.A. para verificar se a precipitação foi completa.
- Filtrar através do cadinho de Gooch com amianto, previamente calcinado e tarado.
- 7. Lavar o precipitado com água destilada por 8 vezes, sendo a primeira com uma gota de ácido clorídrico a 50% v/v, ou lavar o precipitado até que o filtrado não dê reação de precipitação com nitrato de prata.
- Secar o cadinho de Gooch preliminarmente na estufa, mantendo-o cerca de 20 minutos a 120°C.
- Transferir o cadinho de Gooch para um forno e aquecê-lo até calcinação durante 1 hora.
- 10. Deixar esfriar em dessecador e pesar.

Cálculo : Peso x 42,02 = g/L de H_2SO_4

Obs: preparação solução redutora

135 mL/L de ácido clorídrico P.A.

200mL/L de ácido acético P.A.

265 mL/L de álcool etílico P.A.

Em água destilada

44 - Cloreto

- 1. Pipetar 10 mL da amostra em um erlenmeyer de 500 mL.
- 2. Adicionar 20 mL de ácido nítrico P.A. a 50% v/v.
- 3. Adicionar 100 mL de água destilada e 3 gotas de nitrato de prata 0,1 N.
- Titular com solução de nitrato de mercúrio 0,01 N até a eliminação total da turbidez.

Cálculo : mL gastos de nitrato de mercúrio x 35,5 x fc / 10 = ppm de íons cloreto.

4.5 - Cromo trivalente

- Pipetar 10 mL da amostra e transferir para balão volumétrico de 500 mL, acertar o volume com água destilada e homogeneizar a solução.
- 2. Pipetar 10 mL da solução do balão para erlenmeyer de 500 mL.
- 3. Adicionar 50 mL de água destilada.
- Adicionar 15 mL de hidróxido de potássio P.A. a 30% e 5 mL de peróxido de hidrogênio P.A.
- 5. Aquecer até o ponto de ebulição.
- 6. Deixar sob leve fervura até que o volume da solução reduza para 50 mL (tempo aproximado de 20 minutos).
- Esfriar a solução até temperatura ambiente e adicionar aproximadamente 1,0 g de bifluoreto de amônio P.A.
- 8. Adicionar 100 mL de água destilada.
- 9. Adicionar 30 mL de ácido clorídrico P.A. concentrado.
- 10. Adicionar 20 mL de iodeto de potássio P.A. a 10%.
- 11. Adicionar 1 mL de amido a 1%.
- 12. Titular com solução de tiossulfato de sódio 0,1 N até coloração verde.

Cálculo:

mL gastos de Na $_2$ S $_2$ O $_3$ O,1 N = B (Na análise de Cr 3 +) mL gastos de Na $_2$ S $_2$ O $_3$ O,1 N = A (Na análise de Cr 6 +) (B-A) x 8,7 = g/L de Cr 3 + como Cr $_2$ O $_3$

5- Banho de estanho ácido (base sulfato)

5.1 - Estanho metal

- 1. Pipetar 5 mL da amostra para um erlenmeyer de 250 mL.
- 2. Adicionar 50 mL de água destilada.
- 3. Adicionar 50 mL de ácido clorídrico P.A. a 50%.
- 4. Adicionar 1 g de bicarbonato de sódio P.A.
- 5. Adicionar 2 mL de amido a 1%.
- 6. Titular com solução de iodo 0,1 N até viragem de amarelo leitoso para azul.

```
Cálculo : mL gastos I_20,1 N x fc x 1,185 = g/L de Sn^o
```

5.2 - Ácido sulfúrico

- 1. Pipetar 1 mL da amostra para um erlenmeyer de 250 mL.
- 2. Adicionar 50 mL de oxalato de amônio P.A. a 4%.
- 3. Adicionar 4 gotas de água oxigenada P.A.
- 4. Adicionar 3 mL de vermelho de clorofenol.
- Titular com solução de hidróxido de sódio 0,1 N até viragem de amarelo para vermelho.

```
Cálculo : mL gastos NaOH 0,1 N x fc x 2,7 = mL/L de \rm H_2SO_4
```

5.3 - Sulfato de estanho

Cálculo : g/L de Sn $^{\rm o}$ x 1,8094 = g/L de SnSO $_{_4}$

6- Banho de latão

6.1 - Cobre metal (A)

- 1. Pipetar 2 mL da amostra para erlenmeyer de 250 mL.
- 2. Adicionar 1 g de persulfato de amônio P.A.
- 3. Adicionar 20 mL de água destilada.
- 4. Adicionar 5 mL de ácido nítrico P.A. concentrado.
- 5. Aquecer para desprendimento de fumos brancos e deixar esfriar.
- 6. Adicionar hidróxido de amônio P.A. concentrado até azul escuro.
- 7. Adicionar 1 mL de indicador PAR.
- 8. Titular com solução de EDTA 0,1M até a coloração verde.

Cálculo: mL gastos
$$\{(A)-(B)\}$$
 x fc x 3,1785 = g/L de Cu $^{\circ}$

6.2 - Cianeto de cobre

Cálculo : g/L
$$Cu^{\circ}$$
 x 1,41 = g/L de $CuCN$

6.3 - Zinco metal (B)

- 1. Pipetar 2 mL da amostra para erlenmeyer de 250 mL.
- 2. Adicionar 20 mL de solução tampão amoniacal.
- 3. Adicionar 0,5 g de indicador preto de Eriocromo T.
- 4. Adicionar 10 mL de formaldeído P.A. a 10%.
- 5. Adicionar 30 mL de água destilada.
- 6. Titular com solução de EDTA 0,1 M até a coloração azul.

Cálculo : mL gastos (B) x fc x 3,269 = g/L de Zn°

6.4 - Óxido de zinco

Cálculo : g/L
$$\mathrm{Zn}^{\circ}\,\mathrm{x}$$
 1,24 = g/L $\mathrm{Zn}0$

6.5 - Cianeto de zinco

Cálculo : g/L de Zn
$$^{\circ}$$
 x 1,78 = g/L Zn(CN) $_{_2}$

6.6 - Cianeto de sódio livre

- 1. Pipetar 10 mL da amostra em um erlenmeyer de 250 mL.
- 2. Adicionar 100 mL de água destilada.
- 3. Adicionar 10 mL de iodeto de potássio P.A. a 10 %.
- 4. Titular com solução de nitrato de prata 0,1 N até primeira turbidez.

Cálculo : mL gastos $AgNO_3$ 0,1 N x fc x 0,98 = g/L NaCN livre

7- Banho de zinco alcalino sem cianetos

7.1 - Zinco metal

- 1. Pipetar 2 mL da amostra para erlenmeyer de 250 mL.
- 2. Adicionar 50 mL de água destilada.
- 3. Adicionar 20 mL de solução tampão amoniacal.
- 4. Adicionar 1 q de indicador preto de Eriocromo T.
- 5. Adicionar 20 mL de formaldeído P.A. a 10% v/v.
- 6. Titular com solução de EDTA 0,1M até viragem para o azul.

Cálculo : mL gastos EDTA 0,1 M x fc x 3,269 = g/L de Zn°

7.2 - Óxido de zinco

Cálculo : g/L
$$Zn^{\circ}$$
 x 1,2447 = g/L de $Zn0$

7.3 - Soda cáustica ou potassa cáustica

- 1. Pipetar 5 mL da amostra para erlenmeyer de 250 mL.
- 2. Adicionar 10 gotas de indicador índigo carmim.
- 3. Titular com solução de ácido sulfúrico 1 N até azul intenso.

Cálculo : mL gastos H_2SO_4 l N x fc x 8,0 = g/L de NaOH ou mL gastos H_2SO_4 l N x fc x 11,22 = g/L KOH

8 - Banho de zinco ácido - Base KCl

8.1 - Zinco metal

- 1. Pipetar 2 mL da amostra para erlenmeyer de 250 mL.
- 2. Adicionar 50 mL de água destilada.
- 3. Adicionar 20 mL de solução tampão amoniacal.
- 4. Adicionar 0,5 g de indicador preto de Eriocromo T.
- 5. Adicionar 10 mL de formaldeído P.A. a 10%.
- 6. Titular imediatamente com solução de EDTA 0,1 M até a coloração azul.

Cálculo: mL gasto EDTA 0,1 M x fc x 3,269 = g/L de Zn $^{\circ}$

8.2 - Cloreto total

- 1. Pipetar 1 mL da amostra para erlenmeyer de 250 mL.
- 2. Adicionar 50 mL de água destilada.
- 3. Adicionar 10 mL de cromato de sódio P.A. a 10%.
- 4. Titular com solução de nitrato de prata 0,1 N, considerando a primeira viragem do amarelo para ligeiramente alaranjado.

Cálculo: mL gastos AgNO $_3$ 0,1 N x fc x 3,546 = g/L de Cl $^-$

8.3 - Cloreto de zinco

Cálculo: g/L
$$Zn^{\circ}$$
 x 2,0847 = g/L de $ZnCl_{2}$

8.4 - Cloreto de potássio

Cálculo: 2,10 x [g/L Cl
$$^-$$
 – (0,52 x g/L ZnCl $_2$)] = g/L de KCl

8.5 - Ácido hórico

- 1. Pipetar 2 mL da amostra para erlenmeyer de 250 mL.
- 2. Adicionar 5 gotas de indicador de púrpura de bromocresol.
- 3. Ajustar o pH com a adição de hidróxido de sódio 0,1 N até cor azul.
- 4. Adicionar 10 mL de sorbitol PA a 70%.
- 5. Titular com solução de hidróxido de sódio 0,1 N até coloração azul.

Cálculo: mL gastos NaOH 0,1 N x fc x 3,092 = $g/L H_3BO_3$

9 - Banho de zinco ácido (base sulfato)

9.1 - Zinco metal

- 1. Pipetar 2 mL da amostra para erlenmeyer de 250 mL.
- 2. Adicionar 50 mL de água destilada.
- 3. Adicionar 25 mL de solução tampão amoniacal.
- 4. Adicionar 1 q de indicador de preto de Eriocromo T.
- 5. Adicionar 20 mL de formaldeído PA a 10%.
- 6. Titular com solução de EDTA 0,1M até coloração azul.

Cálculo : mL gasto EDTA x fc x 3,269 = g/L de Zn $^\circ$

Obs: Quando houver problema na viragem, utilizar o método opcional.

9.2 - Zinco metal (opcional)

- 1. Pipetar 10 mL da amostra para balão volumétrico de 100 mL.
- 2. Pipetar 10 mL da amostra diluída anteriormente para erlenmeyer de 250 mL.
- 3. Proceder do item 2 ao 6 de acordo com o descrito acima.

Cálculo : mL gastos EDTA x fc x $6,538 = g/L de Zn^{\circ}$

9.3 - Sulfato de zinco

Cálculo : g/L Zn $^{\circ}$ x 4,4 = g/L de ZnSO $_{_{\rm A}}$.7 ${\rm H}_{_{\rm O}}$ O

9.4 - Cloreto

- 1. Pipetar 10 mL da amostra para erlenmeyer de 250 mL.
- 2. Adicionar 50 mL água destilada.
- 3. Adicionar 5 mL de cromato de sódio P.A. a 10%.
- 4. Adicionar 2 g de bicarbonato de sódio P.A.
- 5. Titular com solução de nitrato de prata 0,1 N até coloração marrom claro.

Cálculo : mL gastos AgNO $_{3}$ 0,1 N x fc x 0,3546 = g/L de Cl $^{-}$

9.5 - Ácido bórico

- 1. Pipetar 2 mL da amostra para erlenmeyer de 250 mL.
- 2. Adicionar 1 mL de indicador púrpura de bromocresol.
- 3. Adicionar 10 mL de sorbitol P.A. a 70%.
- 4. Titular com solução de hidróxido de sódio 0,1N até coloração azul.

Cálculo : mL gastos NaOH 0,1N x fc x 3,092 = g/L de H_3BO_3

10 - Banho de zinco alcalino cianídrico

10.1 - Cianeto de sódio total

- 1. Pipetar 2 mL da amostra para erlenmeyer de 250 mL.
- 2. Adicionar 50 mL de solução indicadora de cianetos.
- Titular com solução de nitrato de prata 0,1 N até a primeira turbidez permanente.

Cálculo : mL gastos $AgNO_3$ 0,1 N x fc x 4,9 $\,=\,$ g/L de NaCN Total

10.2 - Zinco metal

- Dar continuidade à análise usando o mesmo erlenmeyer com a solução titulada na análise do cianeto.
- 2. Adicionar 20 mL de solução tampão amoniacal.
- 3. Adicionar 1 g de indicador de preto de Eriocromo T.
- 4. Adicionar 20 mL de formaldeído P.A. a 10%.
- 5. Titular com solução de EDTA 0,1 M até viragem para azul.

Cálculo : mL gastos EDTA 0,1 M x fc x 3,269 = g/L de Zn $^{\circ}$

10.3 - Soda cáustica

- 1. Pipetar 5 mL da amostra para erlenmeyer de 250 mL.
- 2. Adicionar 10 mL de cianeto de sódio P.A. a 10%.
- 3. Adicionar 10 gotas de indicador índigo carmim.
- 4. Titular com solução de ácido sulfúrico 1 N até azul esverdeado.

Cálculo : mL gastos H_2SO_4 1 N x fc x 8,0 = g/L de NaOH

11- Banho alcalino de zinco ferro

11.1 - Zinco metal

- Pipetar 5 mL da amostra filtrada para um erlenmeyer de 500 mL. 1.
- Adicionar 50 mL de água destilada. 2.
- 3. Adicionar 20 mL de solução tampão (100 g/L de hidróxido de sódio P.A. e 240 mL/L de ácido acético glacial P.A.).
- Adicionar 1 g de indicador laranja de xilenol (mistura a 1% em KNO₃). 4.
- 5. Titular com solução de EDTA 0,1 M até mudança de coloração de violeta para amarelo.

```
Cálculo: mL gastos EDTA 0,1 M x fc x 1,3074 = g/L de Zn^{\circ}
```

11.2 - Soda cáustica ou potassa cáustica

- 1. Pipetar 5 mL da amostra em um erlenmeyer de 250 mL. 1.
- 2. 2. Adicionar 10 gotas de indicador índigo carmim.
- 3. 3. Titular com solução de ácido sulfúrico 1 N até coloração azul intenso.

```
Cálculo : mL gastos H_2SO_4 1 N x fc x 8,0 = g/L de NaOH
ou
mL gastos H_2SO_4 1 N x fc x 11,22 = g/L KOH
```

11.3 - Ferro metal

A análise de ferro deverá ser feita via espectrofotometria de absorção atômica.

12- Banho alcalino de zinco níquel

12.1 - Zinco metal

- 1. Pipetar 2 mL da amostra para erlenmeyer de 500 mL.
- 2. Adicionar 100 mL de água destilada.

- 3. Adicionar 25 mL de solução tampão amoniacal.
- 4. Adicionar 0,5 q de indicador preto de Eriocromo T.
- 5. Adicionar 10 mL de formaldeído P.A. a 10%.
- 6. Titular com solução de EDTA 0,1 M até mudança de coloração de roxo para azul.

Cálculo : mL gastos EDTA 0,1 M x fc x 3,269 = g/L de Zn $^{\rm o}$

12.2 - Soda cáustica

- 1. Pipetar 5 mL da amostra para erlenmeyer de 250 mL.
- 2. Adicionar 25 mL de cloreto de bário PA a 10%.
- 3. Adicionar de 2 a 3 gotas de fenolftaleína.
- 4. Titular com solução de ácido sulfúrico 1N até mudança de coloração de rosa para branco.

Cálculo : mL gastos H_2SO_4 l N x fc x 8,0 = g/L de NaOH

12.3 - Níquel metal

A análise de níquel deverá ser feita via espectrofotometria de absorção atômica.

13 - Banho ácido de zinco cobalto

13.1 - Zinco metal

- 1. Pipetar 2 mL da amostra para erlenmeyer de 250 mL.
- 2. Adicionar 50 mL de água destilada.
- 3. Adicionar 20 mL de solução tampão amoniacal.
- 4. Adicionar 0,5 g de indicador preto de Eriocromo T.
- 5. Adicionar 10 mL de formaldeído PA a 10%.
- 6. Titular imediatamente com solução de EDTA 0,1 M até a coloração azul.

Cálculo: mL gastos EDTA 0,1 M x fc x 3,269 = q/L de Zn°

13.2 - Cloreto total

- 1. Pipetar 1 mL da amostra para erlenmeyer de 250 mL.
- 2. Adicionar 50 mL de água destilada.
- 3. Adicionar 10 mL de cromato de sódio P.A. a 10%.
- 4. Titular com solução de nitrato de prata 0,1 N até marrom avermelhado.

Cálculo: mL gastos $AgNO_3$ 0,1 N x fc x 3,546 = g/L de Cl^-

13.3 - Cloreto de zinco

Cálculo: g/L Zn° x 2,0847 = g/L de $ZnCl_{2}$

13.4 - Cloreto de potássio

Cálculo: $2,10 \times [g/L Cl^{-} - (0,52 \times g/L ZnCl_{2})] = g/L de KCl$

13.5 - Cobalto metal

Análise por espectrofotômetro de absorção atômica

Soluções padrão

1. Ácido sulfúrico 1 N

1.1 - Preparação

- Dissolver 29 mL de ácido sulfúrico P.A. concentrado em béquer contendo 500 mL de água destilada.
- 2. Avolumar para 1.000 mL com água destilada homogeneizando a solução.

1.2 - Padronização

- Pesar com exatidão 500 mg de carbonato de sódio P.A., previamente seco em estufa e mantido em dessecador.
- Transferir analiticamente para erlenmeyer de 250 mL dissolvendo com aproximadamente 50 mL de água destilada.
- 3. Adicionar 3 gotas de indicador alaranjado de metila.
- Titular com a solução de ácido sulfúrico, preparada conforme indicado acima, até viragem para coloração rósea.

1.3 - Cálculo

$$\label{eq:fc} \text{fc} \; (\,\text{H}_2\text{SO}_4\,\text{l,0}\,\text{N}\,) \; = \! \frac{\text{mg de N}\alpha_2\text{CO}_3}{\text{mL gastos de H}_2\text{SO}_4 \;\; \text{x} \;\; 53,0}$$

2. EDTA 0,1 M

2.1- Preparação

- Dissolver 37,225 g de EDTA sal dissódico P.A. em béquer contendo 500 mL de água destilada.
- 2. Adicionar 8,0 g de hidróxido de sódio P.A. e agitar até dissolução total.
- 3. Avolumar para 1.000 mL com água destilada homogeneizando a solução.

2.2 - Padronização

- Pesar com exatidão de 100 a 200 mg de zinco metálico P.A., previamente seco em estufa e mantido em dessecador.
- 2. Dissolver em erlenmeyer com ácido clorídrico P.A. concentrado.
- 3. Adicionar 50 mL de água destilada.
- 4. Adicionar 10 mL de hidróxido de amônio P.A. concentrado.
- 5. Adicionar 0,5 g de indicador preto de Eriocromo T.
- 6. Adicionar 10 mL de formaldeído P.A. a 10% v/v.
- Titular imediatamente com a solução de EDTA, preparada conforme indicado acima, até viragem para coloração azul.

2.3 - Cálculo

fc
$$_{(EDTA~0,1~M\,)}\,=\,\frac{mg~de~Zn^{\,\circ}}{mL~gastos~de~EDTA~x~6,538}$$

3. Hidróxido de sódio 0,1 N

3.1 - Preparação

- Dissolver 4,0 g de hidróxido de sódio P.A. em béquer contendo 500 mL de água destilada.
- 2. Avolumar para 1.000 mL com água destilada homogeneizando a solução.

3.2 - Padronização

- Pesar com exatidão de 100 a 200 mg de biftalato de potássio P.A., previamente seco em estufa e mantido em dessecador.
- Transferir analiticamente para erlenmeyer de 250 mL dissolvendo com água destilada.
- 3. Adicionar 3 gotas de indicador fenolftaleína.
- Titular com a solução de hidróxido de sódio, preparada conforme indicado acima, até viragem para coloração rósea.

3.3 - Cálculo

$$\mbox{fc}_{\,(\mbox{N}\alpha\mbox{OH}\,0,1\,\mbox{N}\,)} = \frac{\mbox{mg de HOCOC}_{\mbox{\tiny 6}}\mbox{H}_{4}\mbox{COOK}}{\mbox{mL gastos de N}\alpha\mbox{OH}\,\,\times\,\,20,4216}$$

4. Iodo 0,1 N

4.1 - Preparação

- Dissolver 36,0 g de iodeto de potássio P.A. em béquer contendo 300 mL de água destilada.
- 2. Adicionar 12,9 g de iodo P.A. e agitar até dissolução total.
- 3. Avolumar para 1.000 mL com água destilada homogeneizando a solução.

4.2 - Padronização

- Pipetar 25 mL da solução de iodo, preparada conforme indicado acima, para erlenmeyer de 250 mL.
- 2. Adicionar 100 mL de ácido acético P.A. a 5% v/v.
- Titular imediatamente com solução de tiossulfato de sódio 0,1 N, adicionando 5 mL de amido como indicador até desaparecimento da cor azul.

4.3 - Cálculo

$$\text{fc}_{\,(I_{_2}\,0,1\,N\,)}\,=\frac{\text{mL gastos Na}_2S_2O_3\,\text{x fc(Na}_2S_2O_3\,0,1\,N\,)}{25}$$

5. Nitrato de mercúrio 0,01 N

5.1 - Preparação a partir de óxido de mercúrio - (HgO)

- Em béquer de 100 mL, dissolver 1,083 g de óxido de mercúrio P.A. com 5 mL de ácido nítrico P.A. concentrado.
- 2. 2. Transferir analiticamente para um balão volumétrico de 1.000 mL.
- 3. Avolumar para 1.000 mL com água destilada homogeneizando a solução.

5.2 - Preparação a partir de nitrato de mercúrio - [Hg(NO₂)₂]

- Em béquer de 100 mL, dissolver 1,668 g de nitrato de mercúrio P.A. com ácido nítrico P.A. α 50 % v/v. Adicionar o ácido até completa dissolução.
- 2. Transferir analiticamente para um balão volumétrico de 1.000 mL.
- 3. Avolumar para 1.000 mL com água destilada homogeneizando a solução.

5.3 - Padronização

- 1. Pipetar 25 mL de solução de ácido clorídrico 0,01 N para erlenmeyer de 250 mL.
- 2. Adicionar 50 mL de água destilada.
- 3. Adicionar 20 mL de ácido nítrico P.A. a 50% v/v.
- Adicionar 4 gotas de solução de nitrato de prata 0,1 N, para turvação da solução.
- 5. Titular imediatamente com solução de ${\rm Hg(NO_3)_2}$ 0,01 N até que a solução se torne límpida.

5.4 - Cálculo

$$\mbox{fc}_{\,[\,\mbox{Hg(NO}_{3})_{2}\,0,01\,\,N\,\,]} = \frac{25\,\mbox{x fc(HCl 0,01\,\,N\,)}}{\mbox{mL gastos Hg(NO}_{3})_{2}}$$

6. Nitrato de prata 0,02 N

6.1 - Preparação

- Dissolver 3,4 g de nitrato de prata P.A. em béquer contendo 500 mL de água destilada.
- 2. Avolumar para 1.000 mL com água destilada homogeneizando a solução.
- 3. Após a fatoração, armazenar em frasco ambar.

6.2 - Padronização

 Pesar com exatidão de 50 a 80 mg de cloreto de sódio P.A., previamente seco em estufa e mantido em dessecador.

- Transferir analiticamente para erlenmeyer de 250 mL, dissolvendo com água destilada.
- 3. Adicionar 3 mL de solução de cromato de potássio P.A. a 10%.
- Titular com a solução de nitrato de prata, preparada conforme indicado acima, até viragem para coloração marrom.

6.3 - Cálculo

$$\mbox{fc}_{\,(\mbox{AgNO}_3\,0,02\,\mbox{\,N}\,)} \,=\, \frac{\mbox{mg de N}\mbox{O}\mbox{Cl}}{\mbox{mL g}\mbox{gastos de AgNO}_3\,\,\mbox{x}\,\,1,169}$$

7. Nitrato de prata 0,1 N

7.1 - Preparação

- Dissolver 17,0 g de nitrato de prata P.A. em béquer contendo 500 mL de água destilada.
- 2. Avolumar para 1.000 mL com água destilada homogeneizando a solução.
- 3. Após a fatoração, armazenar em frasco ambar.

7.2 - Padronização

- Pesar com exatidão 200 mg de cloreto de sódio P.A., previamente seco em estufa e mantido em dessecador.
- Transferir analiticamente para erlenmeyer de 250 mL, dissolvendo com água destilada.
- 3. Adicionar 3 mL de solução de cromato de potássio P.A. a 10%.
- Titular com a solução de Nitrato de Prata, preparada conforme indicado acima, até viragem para coloração marrom.

7.3 - Cálculo

$$\mbox{fc}_{\mbox{ $(AgNO_3$ 0,1 N)$}} = \quad \frac{\mbox{mg de N}\alpha\mbox{Cl}}{\mbox{mL gastos de AgNO}_3 \mbox{ x 5,845}}$$

8. Tiosulfato de sódio

8.1 - Preparação

- Dissolver 26,9 g de tiossulfato de sódio P.A. em béquer contendo 500 mL de áqua destilada.
- 2. Adicionar 0,2 g de carbonato de sódio P.A. e agitar até dissolução total.
- 3. Avolumar para 1.000 mL com água destilada homogeneizando a solução.

8.2 - Padronização

- Pesar com exatidão de 100 a 200 mg de dicromato de potássio P.A., previamente seco em estufa e mantido em dessecador.
- Transferir analiticamente para erlenmeyer de 250 mL dissolvendo com aproximadamente 50 mL de água destilada.
- 3. Adicionar 10 mL de ácido sulfúrico P.A. a 25% v/v.
- 4. Adicionar 10 mL de solução de iodeto de potássio P.A. a 10%.
- Titular imediatamente com solução de tiossulfato de sódio, preparada conforme indicado acima, adicionando l mL de amido como indicador até desaparecimento da cor escura.

8.3 - Cálculo

$$\text{fc}_{\;(\;N\alpha_{2}S_{2}O_{3}\;0,1\;N\;)} = \frac{\text{mg de }K_{2}\text{Cr}_{2}O_{7}}{\text{mL gastos de }N\alpha_{2}S_{2}O_{3}\;\;x\;\;4,9035}$$

Reagentes e Indicadores

Reagentes

1 - Solução tampão amoniacal com cianeto ou solução tampão pH 10

- 1. Em béguer de 1.000 mL adicionar 400 mL de água destilada.
- 2. Adicionar 350 mL de hidróxido de amônio P.A. concentrado sob leve agitação.
- 3. Adicionar 53,5 g de cloreto de amônio P.A. e agitar até dissolução total.
- 4. Adicionar 10 mL de cianeto de sódio P.A. a 10%.
- Avolumar para 1.000 mL com água destilada homogeneizando a solução.

2 - Solução indicadora de cianetos

- 1. Em béquer de 1.000 mL adicionar 500 mL de água destilada.
- 2. Adicionar 10 mL de iodeto de potássio a 10%.
- 3. Em capela, adicionar 100 mL de hidróxido de amônio P.A. concentrado.
- 4. Avolumar para 1.000 mL com água destilada homogeneizando a solução.

Indicadores

l - Alaranjado de metila

- 1. Aquecer 100 mL de água destilada entre 80 a 90 °C em béquer de 100 mL.
- 2. Adicionar 0,2 g de indicador alaranjado de metila e agitar até dissolução.
- 3. Esfriar a solução, avolumar para 100 mL e filtrar se necessário.

2 - Azul de bromofenol

- 1. Pesar 0,1 g de indicador azul de bromofenol em béquer de 100 mL.
- Adicionar álcool etílico P.A. concentrado, sob agitação, até dissolução total do indicador.
- 3. Avolumar para 100 mL com água destilada homogeneizando a solução.

3 - Fenolftaleina

- 1. Pesar 1 g de indicador fenolftaleína em béquer de 100 mL.
- Adicionar 60 mL de álcool etílico P.A. concentrado e agitar até dissolução total do indicador.
- 3. Avolumar para 100 mL com água destilada homogeneizando a solução.

4 - Indigo carmin

- 1. Adicionar 50 mL de água destilada em béquer de 100 mL.
- Adicionar 1,0 g de indicador índigo carmin e agitar até dissolução do indicador.
- 3. Avolumar para 100 mL com água destilada homogeneizando a solução.

5 - Laranja de xilenol (líquido)

- 1. Adicionar 50 mL de água destilada em béquer de 100 mL.
- Adicionar 1,0 g de idicador alaranjado de xilenol e agitar para dissolução do indicador
- 3. Avolumar para 100 mL com água destilada homogeneizando a solução.

6 - Murexida

- 1. Pesar 1,0 g de indicador murexida e reservar.
- 2. Pesar 100 g de cloreto de sódio P.A. e reservar.
- 3. Misturar em almofariz com pistilo o cloreto de sódio P.A. com a murexida, adicionando quantidades gradativas de cada um. Deixar a mistura final homogênea.

7 - PAR

- 1. Adicionar 50 mL de água destilada em béquer de 100 mL.
- Adicionar 0,1 g de 4-(2-piridilazo) resorcinol ou resorcina PAR e agitar para dissolução do indicador.
- 3. Avolumar para 100 mL com água destilada homogeneizando a solução.

8 - Preto de eriocromo T

- 1. Pesar 1,0 g de indicador preto de eriocromo T e reservar.
- 2. Pesar 100 q de cloreto de sódio P.A. e reservar.
- Misturar em almofariz com pistilo o cloreto de sódio P.A. com o indicador preto de Eriocromo T, adicionando quantidades gradativas de cada um. Deixar a mistura final homogênea.

9 - Púrpura de bromocresol

- 1. Pesar 0,1 g de indicador púrpura de bromocresol em béquer de 100 mL.
- Adicionar álcool etílico P.A. concentrado, sob agitação, até dissolução total do indicador.
- 3. Avolumar para 100 mL com água destilada homogeneizando a solução.

10 - Vermelho de clorofenol

- 1. Pesar 1,0 g de indicador vermelho de clorofenol em béquer de 100 mL.
- Adicionar álcool etílico P.A. concentrado, sob agitação, até dissolução total do indicador.
- 3. Avolumar para 100 mL com água destilada homogeneizando a solução.

11 - Vermelho de metila

- 1. Pesar 1,0 g de indicador vermelho de metila em béquer de 100 mL.
- Avolumar com álcool etílico P.A. a 70% v/v, sob agitação, até dissolução total do indicador.

MPT

Processos de pré-tratamentos

Teoria dos fosfatos

1 - Propriedades dos desengraxantes

Fatores que influenciam a eficiência de um desengraxante

- Concentração
- Temperatura e tempo
- Quantidade de contaminantes (tempo de uso teor de óleo)
- Tipo e concentração de tensoativos
- Agitação (em caso de desengraxante por imersão)
- Pressão (em caso de desengraxante por aspersão)

Critérios para a seleção de um desengraxante

- Tipo de substrato
- Forma de aplicação
- Tipo de contaminantes
- Processo posterior

Características químicas e tipos de desengraxantes

Para materiais ferrosos

- Alcalinos
- Neutros
- Solventes
- Protetivos
- Emulgadores e demulgadores

Para materiais não ferrosos

- Levemente alcalinos
- Neutros
- Gravadores/fosqueadores
- eobioÀ •

Características físicas

- Sólidos
- Líquidos
- Monocomponente
- Bicomponente

Componentes químicos

- Orgânicos tensoativos / surfactantes (detergentes)
- Inorgânicos sais alcalinos
- Auxiliares sequestrantes, dispersantes, descarbonizantes, tamponantes, inibidores, protetivos etc.

Formas de aplicação

- Aspersão
- Imersão
- Equipamento de alta pressão
- Eletrolítico (corrente elétricα)
- Ultra-som
- Fase vapor (solvente clorado em desuso)

2 - Características dos processos de fosfato

2.1 - Fosfato de ferro para pintura

Processo compacto, utilizando-se equipamento de 3 a 5 estágios. Possue baixo custo operacional e pode ser utilizado tanto por imersão como por aspersão.

2.2 - Fosfato de zinco e tricatiônico para pintura

Processos largamente utilizados como base para pintura em sistemas de multi estágios. A escolha entre os dois processos está na proteção contra a corrosão desejada e no tipo de pintura a ser aplicado; pois o fosfato de zinco tradicional não atende os requisitos básicos do processo de pintura por eletroforese catódica.

2.3 - O fosfato de zinco aplicado para deformação a frio

O ferro e o aço são bastante duros e resistentes. No processo de deformação a frio, é necessário aplicar muita força, ocasionando altas pressões superficiais e gerando um forte atrito entre o material a trabalhar e a superfície metálica da ferramenta. Quando arames, tubos, perfis etc. são deformados a seco e a frio através de processos mecânicas, ocorre esfolamento e erosão, onde partículas metálicas são arrancadas da superfície do metal, causando ranhuras e muitas vezes desgaste nas ferramentas de deformação.

A deformação a frio engloba diversos processos, dentre os quais:

- Trefilação de fios
- Extrusão de tubos
- Estampagem

Todas estas operações requerem uma boa lubrificação da superfície a ser deformada, o que só se consegue através da aplicação de um tratamento de camada de conversão.

Entre os tratamentos de camada de conversão, a fosfatização é uma das mais eficientes, pois a camada formada aumenta a capacidade de retenção dos lubrificantes.

Destacamos algumas características das camadas fosfatizadas:

Alguns tipos de cristais obtidos na camada:

- Não sofrem destacamento mesmo sob deformação severa e não são desgastadas e nem perdem a aderência durante a deformação.
- Reduz de maneira significativa o coeficiente de atrito entre metal/metal.
- Permitem aumentar as velocidades das operações de deformação.
- Camadas fosfatizadas, a base de fosfato de zinco, podem reagir com um sabão reativo à base de estearato de sódio, formando estearato de zinco, que é altamente lubrificante.
- Camadas fosfatizadas adquirem após a deformação, uma superfície de acabamento que oferece certo grau de proteção contra a corrosão.
- Camadas fosfatizadas suportam alto esforço mecânico.

2.4 - Fosfato de zinco-cálcio para oleamento

Os íons cálcio tem um grande efeito na diminuição do tamanho e na forma dos cristais, tornando a camada mais resistente à corrosão, mais homogênea e compacta. A utilização do fosfato zinco-cálcio torna o processo menos dependente do tipo de pré-tratamento, não necessitando do estágio de condicionamento, mesmo usando desengraxantes fortemente alcalinos e decapagem ácida.

2.5 - Fosfato de manganês para oleamento

Processo largamente utilizado, quando se requer boa resistência à corrosão sem necessidade de pintura e também quando o efeito cosmético das peças tratadas é

____Manual Técnico

requerido. A camada de fosfato cinza escuro com a aplicação de óleo promove um visual final com um toque de beleza peculiar.

2.6 - Nanotecnologia

Conjunto de técnicas, baseadas na física, química, biologia e engenharia, que visam estender a capacidade humana de criar e desenvolver novos produtos e processos, fundamentadas na tecnologia de manipular as moléculas e a matéria até os limites do átomo.

A nanotecnologia aplicada consiste em depositar nas superfícies a serem tratadas partículas nanométricas de óxidos de zircônio, ferro, alumínio, cromo trivalente e zinco dependendo do substrato a ser tratado. Trata-se de processo reativo gerando sub-produtos, porém em quantidades mínimas pois a camada depositada é extremamente baixa.

3 - Tipos e características dos fosfatos e nanotecnologia

3.1 - Fosfato de ferro

Finalidade: Base para pintura, com excelente aderência da tinta

Composto: Fe₂(PO₂)₂.8H₂O - Vivianita

Estrutura: Amorfa

Peso de camada: 2 a 12 mg/dm²

Características: Boa resistência à corrosão

Necessita aquecimento Baixa formação de borra

Pouco investimento em equipamentos

Fácil controle dos banhos

Aplicação: Manual: 3 em 1

Aspersão: instalações com 3 a 5 estágios

Imersão: instalações com 5 a 7 estágios

3.2 - Fosfato de zinco

Finalidade: Base para pintura, deformação a frio e oleamento

Composto: Zn₂(PO₄)₂.4H₂O - Hopeita

Estrutura: Cristalina

Peso de camada: 15 a 30 mg/dm² para pintura

100 a 250 mg/dm² para deformação e oleamento

Características: Ótima resistência à corrosão

Longa vida dos banhos

Excelente aderência das tintas

Excelente absorção de óleos e lubrificantes

Aplicação: Aspersão e/ou imersão

3.3 - Fosfato tricatiônico

Finalidade: Base para pintura

Composto: $Zn_2(Mn,Fe)(PO_4)_2$.4 H_2O - Fosfofilita

Estrutura: Cristalina

Peso de camada: 18 a 30 mg/dm²

Características: Excelente resistência à corrosão

Longa vida dos banhos Excelente aderência das tintas

Aplicação: Aspersão e/ou imersão

3.4 - Fosfato de zinco-cálcio

Finalidade: Base para pintura, deformação a frio, adesão metal bor-

racha e oleamento

Composto: Zn, Ca(PO,), 2H, O - Scholzita

Estrutura: Cristalina

Peso de camada: 15 a 30 mg/dm² para pintura

> 50 mg/dm² para deformação ou oleamento

Características: Resistente à alta temperatura

Boa resistência à abrasão

Utilizado em peças de segurança

Aplicação: Imersão

3.5 - Fosfato de manganês

Finalidade: Oleamento

Composto: (Fe²⁺, Mn)_sH₂(PO₄)₄. 4H₂O - Hureaulita

Estrutura: Cristalina

Peso de camada: 100 a 400 mg/dm²

Características: Excelente absorção de lubrificantes e óleos

Temperatura de 85 a 95 °C Resistência à alta temperatura

Alta resistência à abrasão e desgaste do metal

Camada com tonalidade que pode variar de cinza claro a

escuro

Aplicação: Imersão

3.6 - Nanotecnologia – base Zr-Ti e Zr-Cr trivalente

Finalidade: Base para pintura Composto: Óxidos metálicos

Estrutura: Amorfo

Peso de camada: $10 \text{ a } 200 \text{ mg/dm}^2$

Características: Trabalha em temperatura ambiente

Baixa formação de lodo Boa resistência à corrosão Excelente aderência Longa vida do banho

Aplicação: Aspersão ou imersão

4 - Propriedades dos decapantes

Parâmetros Base	Ácido Clorídrico	Ácido Sulfúrico	Ácido Fosfórico	
Aparência da superfície do aço	Clara	Levemente fosca	Levemente fosca	
Concentração	30 – 50% v/v	10 – 30% v/v	5 – 50% v/v	
Tempo de imersão	5 - 30 min	5 - 30 min	5 - 30 min	
Temperatura	Ambiente	50 α 80 °C	50 α 70 °C	
Limite máximo de ferro	100 g/L	70 g/L	25 g/L	
Risco de oxidação em pontos mal enxaguados	Muito grande	Médio	Pequeno	
Risco de corrosão nas imediações da instalação	Muito grande	Médio	Desprezível	
Revestimento do tanque	PE	PE	PE	
	PP	PP	PP	
	PVC	Ebonite	Aço inox 316	
Tratamento de efluentes	Neutralização,	Neutralização,	Neutralização,	
	precipitação do Fe,	precipitação do Fe,	precipitação do Fe,	
	filtração do resíduo	filtração do resíduo	filtração do resíduo	
	sólido	sólido, controle do teor	sólido	
		de sulfatos		

5 - Determinações analíticas

- 5.1- Determinação do ponto de saturação do banho desengraxante (análise volumétrica)
 - A Montar um banho desengraxante em laboratório na concentração de 60 g/L
 - 1. Pipetar 10 mL do banho em um erlenmeyer.
 - 2. Adicionar algumas gotas de azul de bromofenol.
 - 3. Titular com HCl 1.0 N.

Cálculo: mL gastos = alcalinidade total

- 1. Pipetar 10 mL do banho em um erlenmeyer.
- 2. Adicionar algumas gotas de fenolftaleína.
- 3. Titular com HCl 1,0 N.

 $\begin{array}{|c|c|} \hline \textbf{C\'alculo: mL gastos} = \text{alcalinidade livre} \\ \hline \\ \textbf{FATOR A} = \frac{\text{Alcalinidade total}}{\text{Alcalinidade livre}} \end{array}$

B - Coletar amostra do banho desengraxante do tanque de processo da produção e proceder às mesmas análises anteriores (alcalinidade total e alcalinidade livre)

 $FATOR \ B \ \ = \ \ \frac{Alcalinidade \ total}{Alcalinidade \ livre}$

Resultado: TROCAR O BANHO quando o FATOR B for o dobro do FATOR A

- 5.2- Determinação do teor de óleo em desengraxantes alcalinos
 - 5.2.1 Método com ácido sulfúrico
 - A- Material necessário
 - Proveta de 100 mL.
 - Pipeta graduada de 10 mL.
 - Bagueta fina de vidro
 - Pêra de sucção.

____Manual Técnico

B - Procedimento

- Adicionar 50 mL do desengraxante ainda quente, que contenha óleo, em uma proveta de 100 mL.
- Vagarosamente, sob agitação, com o auxílio de uma bagueta fina de vidro, adicionar 10 mL de ácido sulfúrico P.A. a 50%.
- Assim que o ácido for adicionado, o conteúdo sofrerá enérgica reação de neutralização. Deste modo as primeiras adições deverão ser feitas quase que gota a gota para evitar rápida erupção e perda da amostra.
- Quando todo ácido for adicionado, homogeneizar muito bem a mistura com a bagueta de vidro. Importante: Não inverta a proveta, para que as gotas de óleo não fiquem aderidas ou presas nas paredes internas do mesmo.
- Deixar repousar por pelo menos 30 segundos sem agitar a proveta ou até que a amostra esfrie e ocorra a separação de uma camada oleosa superior.
- Medir cuidadosamente o volume do óleo separado na camada (mL de óleo)

C - Cálculo

mL de óleo x 2=% de óleo no desengraxante

D - Observação

Este método permite a determinação com precisão razoável da porcentagem de óleo no desengraxante. Na verdade, a camada superior não contém somente óleos, mas também tensoativos demulsificantes do desengraxante e possivelmente um pouco de água. Esses componentes estão normalmente presentes, porém em quantidades muito pequenas.

Este teste indica quando o desengraxante deve ser descartado, pois, os reforços torna-se-ão antieconômicos.

5.2.2 - Método com SurTec 930

A - Material necessário

- Proveta de 100 mL com tampa.
- Pipeta graduada de 10 mL.
- Pêra de sucção.

B- Procedimento

- Adicionar 50 mL do desengraxante a ser analisado, na temperatura de trabalho, em uma proveta de 100 mL.
- 2. Adicionar de 0,5 a 1,0 mL de SurTec 930.
- Homogeneizar suavemente a solução com movimentos giratórios no sentido horário e anti-horário. Repetir este movimento 5 vezes de forma suave para garantir boa homogeneização.
- Remover a tampa e deixar repousar por 1 hora para que ocorra a separação de uma camada oleosa superior.
- Medir cuidadosamente o volume do óleo separado na camada (mL óleo).

C - Cálculo

(mL óleo - mL resíduo) x 2 = % v/v de óleo no desengraxante

D - Observação

Este método permite a determinação com precisão razoável da porcentagem de óleo no desengraxante. Na verdade, a camada superior não contém somente óleos, mas também tensoativos demulsificantes do desengraxante e possivelmente um pouco de água ocluída. Esses componentes estão normalmente presentes, porém em quantidades muito pequenas. Em função disto deve ser feito um ensaio "em branco" usando um banho padrão sem uso, para verificar se separa ou não algum componente do desengraxante que não seja óleo. Este valor (mL resíduo) deve ser descontado no cálculo final para a determinação da % v/v de óleo no desengraxante.

Este teste indica quando o desengraxante deve ser descartado, pois, os reforços se tornarão antieconômicos. O limite máximo de óleo em desengraxantes pode variar entre 3 a 8 % v/v. Este valor é variável em função da composição do desengraxante, do tipo de óleo e das condições operacionais de cada linha e deve ser definido na prática para cada situação.

5.3 — Determinação do peso da camada de fosfato

5.3.1 — Método com ácido crômico

A - Procedimento

 Calcular a área do corpo-de-prova que possa ser pesado em balança analítica.

- Limpar o corpo-de-prova com acetona ou solventes voláteis para remover sujidades, e fosfatizar o painel.
- 3. Secar em estufa a 90 °C, esfriar em dessecador à temperatura ambiente.
- Pesar cuidadosamente em balança analítica. Anotar o peso inicial em gramas.
- 5. Imergir o corpo-de-prova por 5 minutos em solução de ácido crômico a 50 g/L, a 74 °C; ou por 2 minutos em solução de ácido crômico a 200 g/L a 82 °C.
- 6. Retirar o corpo-de-prova da solução, e lavar bem em água corrente.
- 7. Secar em estufa a 90 95 °C. Esfriar à temperatura ambiente em dessecador e pesar novamente. Anotar o peso final em gramas.
- Repetir as operações 5,6 e 7 até obter peso constante, que será o peso final.

B - Cálculo

{[(peso inicial) - (peso final)] / área em m^2 } = g/m^2 da camada de fosfato

5.3.2 - Método com hidróxido de sódio

A - Procedimento

- Preparar os corpos-de-prova com dimensão, formato e tamanho tais que seja possível calcular sua área externa com certa facilidade e precisão.
- O seu peso deve ser no máximo 130 g, estando dentro dos limites de pesagem de uma balança analítica de precisão.
- Após a fosfatização, os corpos-de-prova deverão estar secos e limpos. Lavar com acetona ou álcool, secar com ar seco e manter em dessecador.
- 4. Pesar os corpos-de-prova em balança analítica com precisão até a quarta casa decimal e anotar o peso em gramas como P1.
- Colocar os corpos-de-prova em um béquer de vidro ou outro recipiente com capacidade apropriada e adicionar uma solução de hidróxido de sódio a 50%, de maneira que fiquem cobertos pela referida solução.
- Retirar os corpos-de-prova da solução após 25 minutos, lavar bem em água destilada, com auxílio de uma esponja macia, e depois em álcool isopropílico.
- 7. Secar em estufa a 90 95 °C.
- 8. Esfriar a temperatura ambiente em dessecador e pesar novamente

usando balança analítica com precisão até a quarta casa decimal.

9. Anotar o peso em gramas como P2.

B - Cálculo

[(P1) - (P2)] / área em
$$m^2 = g/m^2$$
 da camada de fosfato

5.4 — Determinação do teor de ferro em banhos decapantes ácidos

5.4.1- Método com permanganato

A - Procedimento

- 1. Pipetar 5 mL da amostra para um erlenmeyer de 250 mL.
- Adicionar cerca de 10 a 20 gotas de solução sulfo-fosfórica (50 % de ácido sulfúrico e 50 % de ácido fosfórico).
- 3. Titular com permanganato de potássio 0,05 N até que a cor rosa persista por pelo menos 30 segundos.

B - Cálculo

mL gasto de
$$\mathrm{KMnO_4}$$
 x fc x 0,03864 $\,=\,\,$ % de $\mathrm{Fe_2}$ dissolvido

5.4.2- Método com dicromato

A- Procedimento

- 1. Pipetar 2 mL do banho para erlenmeyer de 250 mL.
- 2. Adicionar 50 mL de água destilada.
- 3. Adicionar 10 mL de ácido sulfúrico 6 N (ou a 25 % v/v).
- 4. Adicionar 2 mL de difenilamina.
- Titular com dicromato de potássio 0,1N até viragem para violeta forte.

B- Cálculo

mL gasto
$$\mathrm{K_2Cr_2O_7}$$
 0,1 N x fc x 2,8 $=$ g/L de ferro

5.5 - Determinação do porcentual de inibição em decapantes ácidos

Estabelece e descreve as condições e os meios necessários para realização do teste prático, ou seja, verificação do poder de inibição em diferentes tipos de ácidos.

A - Preparação dos corpos-de-prova

Providenciar 6 corpos-de-prova em aço carbono (AISI/SAE 1008)

- até AISI/SAE 1080), sem rebarbas e devidamente identificados, com peso inferior a 140 gramas.
- Se necessário decapar os corpos-de-prova deixando-os por tempo suficiente em uma solução de ácido clorídrico (1:1), até que ocorra total remoção das carepas e ou oxidações existentes.
- Lavar rapidamente os corpos-de-prova usando detergente neutro e áqua corrente (usar esponja macia para facilitar a limpeza).
- 4. Finalmente, lavar com álcool isopropílico e secar com ar quente.

B - Preparação da solução de ensaio

Em um béquer de vidro (2.000 mL) preparar uma solução do ácido escolhido e na concentração operacional. Completando com água potável até o nível de 2.000 mL.

C- Procedimento

- Pesar com exatidão, até a quarta casa decimal, em balança analítica, os 6 corpos-de-prova, separando-os da seguinte maneira:

 Corpos-de-prova para a "Prova em Branco" Corpos-de-prova para a "Prova Real".
- Anotar os valores pesados como Plb e Plr
- 3. Dividir a solução preparada em "B" em 2 béqueres. Identificar um béquer como "Prova em Branco" e o outro béquer como "Prova Real".
- Adicionar ao béquer identificado como "Prova Real" uma quantidade de inibidor específico para o ácido escolhido, conforme indicação SurTec, homogeneizando bem a solução após a adição.
- Colocar cuidadosamente 3 corpos-de-prova no béquer identificado como "Prova em Branco" e 3 corpos-de-prova no béquer identificado como "Prova Real".
- 6. Manter os corpos-de-prova no banho por 40 minutos, controlando ou não a temperatura, conforme o tipo de ácido escolhido.
- Decorrido o tempo necessário, retirar os corpos-de-prova, lavá-los com água potável e em seguida com álcool isopropílico secando com ar quente.
- Colocar e guardar os corpos-de-prova secos em dessecador por 30 minutos.
- 9. Pesar novamente e anotar os pesos como: P2b e P2r.

D - Cálculo

$$\frac{(P1b - P2b) - (P1r - P2r) \times 100 = \% \text{ de inibição}}{(P1b - P2b)}$$

Onde:

P1b = peso inicial em gramas dos corpos-de-prova usados na "Prova em Branco"

P2b = peso final em gramas dos corpos-de-prova usados na "Prova em Branco"

Plr = peso inicial em gramas dos corpos-de-prova usados na "Prova Real"

P2r = peso final em gramas dos corpos-de-prova usados na "Prova Real"

E - Observações

Como foram utilizados 3 corpos-de-prova para "Prova em Branco" e 3 corpos-de-prova para "Prova Real", as diferenças (P1b — P2b) e (P1r — P2r) devem ser consideradas como média dos três valores.

5.6 — Determinação do teor de espuma em desengraxantes alcalinos

A- Material para teste

- Proveta de 100 mL com tampa
- Termômetro
- Béquer de 500 mL
- Chapa aquecedora

B - Procedimento

- l. Preparar solução de desengraxante na concentração de uso, de l a 4 %, no béquer de 500 mL.
- Aquecer a solução sempre 10 °C acima da temperatura na qual pretende-se avaliar o desengraxante.
- Transferir 80 mL para a proveta, tampar e inverter 2 vezes para que a temperatura líquido/proveta entre em equilíbrio.
- Medir α temperatura com o termômetro e se estiver na faixa desejada, tampar a proveta.
- Segurando firme a proveta com a mão direita e com o dedo polegar pressionando a tampa, efetuar movimentos bruscos e vigorosos no sentido vertical por aproximadamente 10 segundos.
- 6. Colocar a proveta na bancada, destampar e observar o comportamento da espuma.

C - Resultado

1. Espuma com bom controle tem uma quebra imediata.

 Produto com espuma controlada tem um volume de no máximo 5 mL na proveta após 15 segundos de espera.

6 - Processo de pintura para alumínio — base zirconização

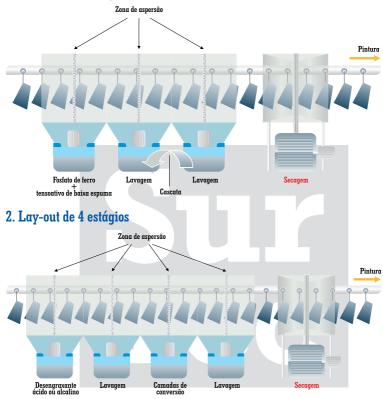
Processo alternativo e substituto do cromo hexavalente com menor impacto ambiental e ecologicamente correto. Trata-se de um metal (zircônio) de transição que dependendo da liga do substrato produz camada incolores a levemente iridescentes.

Estrutura da camada formada/depositada:

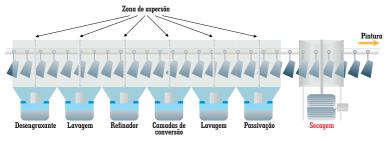
Camada amorfa. Dependendo da composição do produto e condições do processo pode ter dois tipos de camada:

• Simples, formada por óxido de Zircônio: ZrO2.H2

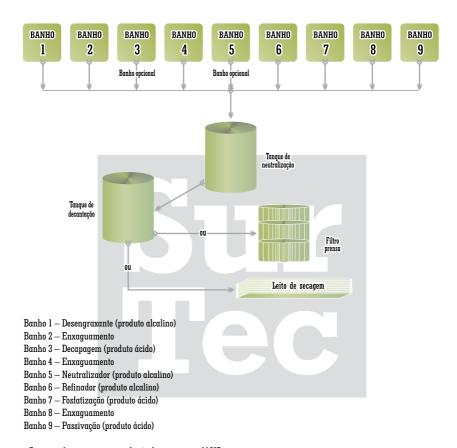
• Complexa : $Zr(AlO_2.H_2O)F_2$


Peso de camada = $0.01 \alpha 0.003 \text{ g/m}^2$

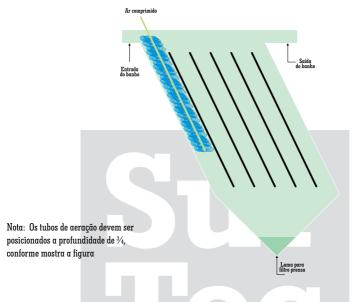
Espessura de camada = 1 a 3 nm

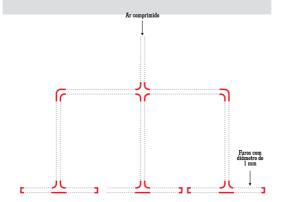


Lay-outs de aspersão


1. Lay-out de 3 estágios

3. Lay-out de 6 estágios


Fluxo para tratamento de efluentes de linhas de fosfatização


- Secagem das peças com circulação de ar quente a 110°C
- Pintura

Produtos a serem adicionados no **Tratamento 1** = **SoluDREAM A** ou **SoluDREAM B**Produtos a serem adicionados no **Tratamento 2** = **SurTec DR 015-ADT** + **SurTec DR 082-FLOC**

Sistema de oxidação de Fe²⁺ para Fe³⁺ em fosfatizantes acelerados por Fe²⁺

Esquema de tubulação para oxidação de Fe²⁺ para Fe³⁺

Sequência para aplicação de fosfato de ferro por <u>imersão</u> para pintura

Etapa	Produto	Concentração	Temperatura	Tempo
1 - Desengraxante	SurTec DR 119-DS	3 - 5% p/v	60 - 85 °C	5 min
2 - Lavagem dupla			Ambiente	
3 - Fosfatização	SurTec DR 352 M-F	3 - 6%	50 - 75 °C	1 - 3 min
4 - Lavagem			Ambiente	
5 - Lavagem com água DI			Ambiente	
6 - Secagem			Máximo 110 °C	10 min

Sequência para aplicação de fosfato de ferro por <u>aspersão</u> para pintura

Etapa	Produto	Concentração	Temperatura	Tempo
1 - Desengraxante	SurTec DR 120-DS	1 - 3% p/v	50 - 80 °C	1-5 min
2 - Lavagem dupla			Ambiente	
3 - Fosfatização	SurTec DR 352 M-F	3 - 6%	50 - 75 °C	1 - 3 min
4 - Lavagem			Ambiente	
5 - Lavagem com água DI			Ambiente	
6 - Secagem			Máximo 110 °C	10 min

Sequência para aplicação de fosfato de zinco por imersão para deformação a frio (trefila de tubos)

Etapa	Produto	Concentração	Temperatura	Tempo
l - Desengraxe/desfosfatização	SurTec DR 118-DS	4 - 5% p/v	85 - 95 °C	5 - 15 min
2 - Lavagem dupla			Ambiente	
3 - Decapagem ácida	SurTec DR 201-DX	40 - 60 % p/v	Ambiente	10 - 15 min
4 - Lavagem dupla			Ambiente	
5 - Refinador	SurTec 610 V	0,1 - 2 % p/v	Ambiente α 40 °C	Mínimo 30 s
6 - Fosfatização	SurTec DR 395-F	6,9 % p/v	65 - 75 °C	5 - 10 min
	SurTec 612 X	0,018% p/v		
7 - Lavagem dupla			Ambiente	
8 - Neutralizador	SurTec DR 048-NEUT	0,1 - 3% p/v	Ambiente α 95 °C	0,5 - 2 min
9 - Sabão lubrificante	SurTec 585	3 - 5% p/v	70 - 75 °C	1 - 5 min
10 - Secagem			80 °C	

Sequência para aplicação de fosfato de zinco por imersão para estampagem profunda (extrusão)

Etapa	Produto	Concentração	Temperatura	Tempo
l - Desengraxe/desfosfatização	SurTec DR 118-DS	4 - 5% p/v	85 - 95 °C	5 - 15 min
2 - Lavagem dupla			Ambiente	
3 - Decapagem ácida	SurTec DR 201-DX	40 - 60 % p/v	Ambiente	10 - 15 min
4 - Lavagem dupla			Ambiente	
5 - Neutralização - ativação	SurTec DR 040-NEUT	0,4 - 0,6% p/v	Ambiente α 50 °C	1 - 2 min
6 - Fosfatização	SurTec 610-M	14% v/v	25 - 50 °C	7 - 15 min
-	Soda cáustica	0,8 g/L		
7 - Lavagem dupla			Ambiente	
8 - Neutralizador	SurTec DR 048-NEUT	1 - 3% p/v	Ambiente a 95 °C	0,5 - 2 min
9 - Sabão lubrificante	SurTec 585	3 - 5% p/v	70 - 75 °C	1 - 5 min
10 - Secagem			80 °C	10 min

Sequência para aplicação de fosfato de zinco por <u>aspersão</u> para pintura a pó ou KTL

Etapa	Produto	Concentração	Temperatura	Tempo
1 - Desengraxante	SurTec DR 191 A - DS SurTec DR 191 B - DS	2 - 3,5% v/v 0,2 - 0,6% v/v	55 - 65 °C	1 - 3 min
2 - Lavagem			Ambiente	0,5 min
3 - Refinador	SurTec DR 054-REF	0,3 - 1% v/v	Ambiente a 40 °C	0,5 min
4 - Fosfatização tricatiônica	SurTec 617 M-F	5,7% p/v ou	20 - 30 °C	1 - 2 min
Acelerador	SurTec 612 X	0,03% p/v		
5 - Lavagem		•	Ambiente	l min
6 - Passivação	SurTec 581	0,10% v/v	Ambiente α 55 °C	0,5 min
7 - Secagem			Máximo 110 °C	5 - 10 min

Sequência para aplicação de fosfato de zinco por imersão a frio para pintura a pó ou KTL

Etapa	Produto	Concentração	Temperatura	Tempo
1 - Desengraxante químico	SurTec DR 183-DS	4 - 5% p/v	80 - 90 °C	5 - 15 min
2 - Lavagem dupla			Ambiente	l min
3 - Decapagem ácida	SurTec DR 201-DX	40 - 60% p/v	Ambiente	5 - 15 min
4 - Lavagem dupla			Ambiente	l min
5 - Refinador	SurTec DR 054-REF	0,3 - 1% v/v	Ambiente a 40 °C	3 - 5 min
6 - Fosfatização tricatiônica	SurTec 618	5,7% p/v ou 4% v/v	20 - 30 °C	5 - 10 min
	SurTec 612 X ou	0,05% p/v		
	SurTec 612 S	0,1 - 0,3% v/v		
7 - Lavagem dupla			Ambiente	l min
8 - Passivação	SurTec 581	0,10% v/v	Ambiente a 60 °C	0,5 min
9 - Secagem			Máximo 110 °C	10 min

Sequência para aplicação de fosfato de manganês por imersão

Etapa	Produto	Concentração	Temperatura	Tempo
l - Desengraxe/desfosfatização	SurTec DR 119 DS	3 - 5% p/v	60 - 85 °C	5 min mínimo
2 - Lavagem dupla			Ambiente	
3 - Decapagem (opcional)	SurTec DR 220 MM-DX	15 - 25 % p/v	Ambiente α 70 °C	3 - 15 min
4 - Lavagem dupla			Ambiente	
5 - Refinador-ativador	SurTec DR 053 C-REF	0,3 - 0,55% p/v	Ambiente α 60 °C	l min
6 - Fosfatização	SurTec 615 HL	13,5 - 16,5% p/v	95 - 98 °C	5 - 20 min
7 - Lavagem		_	Ambiente	
8 - Oleamento (opcional)	SurTec FeS	0,1 - 25% v/v	Ambiente α 85 °C	l min
9 - Secagem			Máximo 110°C	

Sequência para fosfocromatização de alumínio

Etapa	Produto	Concentração	Temperatura	Tempo
1 - Desengraxante químico	SurTec Al 30	30 - 70 g/L	60 - 80 °C	1 - 3 min
2 - Lavagem dupla			Ambiente	
3 - Ātivação ácida	SurTec Prepalloy Ácido Nítrico	35 - 120 g/L 50 - 100 mL/L	Ambiente	30 - 60 s
4 - Lavagem dupla			Ambiente	
	A - Passivo	ıção incolor por spray		
5 A - Passivação incolor por spray	SurTec 653	15 - 25 g/L	30 - 45 °C	30 - 120 s
		ão incolor por imersão		
5 B - Passivação incolor por imersão	SurTec 653	15 - 25 g/L	30 - 45 °C	2 - 5 min
		ssivação amarela		
5 C - Passivação amarela	SurTec 655 B Sólido	5 - 12 g/L	Ambiente	1 - 2 min
	D-P	assivação verde		
5 D - Passivação verde	SurTec 657 I SurTec 657 II	2,5 - 10 v/v 1 - 4% v/v	40 - 50 °C	1 - 10 min
	E - Passi	vação pálido/incolor		
5 E - Passivação pálido - incolor	SurTec 657 I SurTec 657 II	1,25% v/v 0,55% v/v	40 - 50 °C	1 - 10 min
6 - Lavagem dupla			Ambiente	
7 - Secagem			50 - 60 °C	

Sequência para passivação trivalente do alumínio SurTec 650 chromitAL TCP

Etapa	Produto	Concentração	Temperatura	Tempo
Silicio < 1%				
l - Desengraxante químico	SurTec 133	3 - 5% v/v	40 - 90 °C	0,5 - 10 min
	SurTec 089 ou	0,3 - 1,0% v/v		
	SurTec 181 B	3 - 10% v/v		
Silicio > 1%				
l - Desengraxante químico	SurTec 136	3 - 10% v/v	40 - 90 °C	0,5 - 10 min
2 - Desengraxante ácido spray	SurTec 472	2 - 5% v/v	40 - 90 °C	1 - 15 min
	SurTec 085, 086 ou 089	0,2 - 1,0% v/v		
3 - Desengraxante alcalino spray	SurTec 140	3 - 7% v/v	40 - 80 °C	0,5 - 2 min
	SurTec 086	0,2 - 1,0%		
4 - Lavagem dupla			Ambiente	1 - 15 min
5 - Desoxidação	SurTec 495	40 - 100 g/L	20 - 50 °C	Spray 0,5 a 2 min
				Imersão 2 a 5 min
6 - Lavagem dupla			Ambiente	
7 - Passivação trivalente	SurTec 650 chromitAl TCP	Vide abaixo	30 - 40 °C	
			Ideal 40 °C	
8 - Lavagem dupla			Ambiente	
9 - Secagem			60 - 80 °C	

SurTec 650 chromitAl TCP	Temperatura	Tempo
Spray 10 - 50% Ideal 25% v/v	30 °C	1 - 4 min. (ideal 1) Como pre-tratamento antes da pintura 2 - 6 min (ideal 4) Como protetivo, sem pintura.
Îmersão 10 - 50% Ideal 20% v/v	40 °C	0,5 - 1 min (ideal 1) Como pre-tratamento antes da pintura 1 - 3 min (ideal 2) Como protetivo, sem pintura.

SurTec 650 chromitAL TCP

Passivação de Cromo Trivalente para Alumínio

O SurTec 650 chromitAL TCP proporciona excelente resistência à corrosão sobre superfícies nuas de alumínio, melhorando a adesão de revestimentos orgânicos.

Aplica-se também sobre alumínio anodizado,
depósitos de cádmio, ligas de zinco-níquel e estanho-zinco.

- substitui com vantagens a passivação crômica hexavalente convencional.
- não agride o meio ambiente, é atóxica, simples de operar e descartar.
- atende e supera as exigências das normas MIL-DTL-81706 e MIL 5541 quanto a resistência à corrosão sobre alumínio não tratado (> 336 h em teste de névoa salina neutra, conforme ASTM B-117).
- resiste temperaturas até 100°C.

- baixa resistência ao contato elétrico, contemplando as exigências de condutibilidade sobre substratos de alumínio da norma MIL DTL-81706 classe 3.
- testes de campo realizados sobre as ligas 2024, 2219, 5083, 7075 e várias ligas fundidas.
- pode ser aplicado por imersão, spray ou manualmente.
- pode ser usado como selante de baixa temperatura em aluminio anodizado.

Problemas e soluções para linha de fosfato

Problemas	Causas	Correções		
Quebra d'água	Temperatura do desengraxante baixa	Ajustar temperatura para faixa de trabalho / Verificar trocador de calor		
	Concentração do desengraxante baixa	Ajustar concentração para faixa de trabalho		
	Pressão dos "sprays" baixa	Verificar e ajustar bomba de recalque		
	Bicos obstruídos/mal orientados	Desobstruir e orientar bicos		
	Excesso de óleo no banho	Trocar banho / Melhorar sistema		
		de separação de óleo		
Camada de fosfato aberta	Acidez livre alta/pH baixo	Ajustar para faixa de trabalho		
	Concentração refinador baixa	Aumentar para dentro faixa de trabalho		
	Pressão baixa - refinador/fosfato	Ajustar para faixa de trabalho		
	Bicos entupidos- refinador/fosfato	Desobstruir e direcionar bicos		
	Acidez total baixa- banho fosfato	Ajustar acidez / Verificar bomba dosadora		
Passivação	Parada de linha	Evitar paradas		
,	Acidez livre alta	Ajustar conforme especificação		
	Concentração de refinador alta	Diluir o banho para ajustar concentração		
	pH do refinador baixo	Ajustar concentração (Ver. dosadora)		
	Deficiência "sprays" banho fosfato	Inspecionar, desobstruir ou reorientar bicos		
Amarelamento	Desengraxe ineficiente	Ajustar concentração		
	Concentração refinador baixa	Ajustar para faixa de trabalho		
	Contaminação do refinador	Renovar banho		
	Temperatura do fosfato baixa	Aumentar temperatura e checar termômetro		
	Acidez total baixa	Ajustar conforme especificação (checar dosadora)		
	Lavagem após fosfato com caracter ácido	Drenar e ajustar pH se necessário		
	Teor de zinco baixo	Ajustar para faixa de trabalho		
	Bicos do estágio de fosfato entupidos	Desentupir o orientar bicos		
	Passivador com concentração alta (pH baixo)	Diluir e ajustar pH		
Pó / Aspereza	Alto teor de lama de fosfato no banho	Verificar sistema de retirada de lama		
	Lavagem após fosfato ineficiente	Verificar pressão/bicos e bomba de recalque Ver tópico "pontos brancos"		
Pontos brancos	pH do desengraxante baixo	Aumentar concentração		
em HDG e EG	Tempo de imersão longo no	Diminuir tempo de imersão		
	desengraxante/refinador			
	Refinador sem atividade	Aumentar freqüência de troca		
	Fosfato com deficiência de filtragem	Melhorar sistema de filtragem		
	Refinador com concentração alta	Diluir e ajustar concentração		
Espuma em desengraxe	Baixa temperatura do banho	Aumentar temperatura		
por aspersão	Pressão muito alta	Diminuir pressão para o mínimo		

Problemas mais comuns em paradas de linha

I. Desengraxante

Ataque excessivo aos substratos galvanizados produzindo camada de fosfasto não uniforme.

II. Área de transferência entre desengraxante e enxágüe

- Secagem do substrato, ocasionando manchas que poderão aparecer após pintura.
- Amarelamento em aço laminado a frio e ferro fundido que serão revelados após pintura.

III. Refinador

 Poderá promover aparecimento de pontos brancos "white spots", em superfícies galvanizadas ocasionando aspereza após pintura.

IV. Área de transferência entre refinador e fosfato

- Secagem do substrato a ser tratado (aço laminado a frio/ galvanizado/ ferro fundido), ocasionando passivação e pontos brancos nas superfícies galvanizadas.
- Comprometimento nos resultados de aderência e corrosão.

V. Fosfato

Excesso de camada de fosfato, afetando aderência e teste de dobramento.

VI. Área de transferência entre fosfato e enxágüe

• Fixação da lama de fosfato sobre as peças tratadas afetando a qualidade nos ensaios de corrosão.

VII. Enxágüe

 Pode ocorrer amarelamento em aço laminado a frio e ferro fundido principalmente se o pH da água estiver < 5,0.

VIII. Área de transferência entre enxágüe e passivação

- Amarelamento das peças devido ao "over-spray" do passivador.
- Comprometimento dos ensaios de corrosão.

IX. Passivação

- Causa mapeamento na camada de fosfato (pH ácido).
- Pode ocasionar amarelamento em região de aço laminado a frio.
- Comprometimento dos testes de corrosão.

X. Área de transferência entre passivação e enxágüe D.I.

- Amarelamento em regiões de aco laminado a frio.
- Secagem do substrato ocasionando o aparecimento de estrias após pintura.

Tabelas de ligas de alumínio

Nomenclatura da Alluminum Association (AA) e ASTM para ligas trabalhadas

•	Alumínio > 99% de pureza	▶ 1XXX
•	Cobre	▶ 2XXX
•	Manganês	▶ 3XXX
•	Silício	▶ 4XXX
•	Magnésio	▶ 5XXX
•	Magnésio e Silício	▶ 6XXX
•	Zinco	▶ 7XXX
•	Outros elementos	▶ 8XXX

Nomenclatura da Alluminum Association (AA) e ASTM para ligas de fundição

•	Alumínio > 99% de pureza	▶ 1XXX
•	Cobre	▶ 2XXX
•	Silício com adição de Cu e/ou Mg	▶ 3XXX
•	Silício	▶ 4XXX
•	Magnésio	▶ 5XXX
•	Zinco	▶ 7XXX
•	Estanho	▶ 8XXX

ZetaCoat - SurTec 609 A diferença visível

Camada de conversão a base de cromo trivalente
Sistema de pré-tratamento multimetal
para pintura convencional e a pó

ZetaCoat - SurTec 609

- Para aplicações por aspersão ou imersão
- Pode ser usado sobre:
 - aço laminado a frio
 - aço galvanizado a quente
 - aço eletrogalvanizado
 - alumínio
- Oferece alta resistência à corrosão
- Proporciona excelente aderência
- Camada de conversão livre de fosfatos processo ecológico
- Produz uma camada de conversão visível

- Sem formação de lama durante a produção
- É uma aplicação de baixa temperatura (25-35°C)
- Requer curto tempo de tratamento (20-30")
- Tecnologia ambientalmente segura
- Isento de aminas
- Facil manuselo e operação
- Baseado na tecnologia patenteada do cromo trivalente
- Contempla as diretrizes RoHS, WEEE e ELV

SurTec do Brasil Ltda. 11 4334.7316 • 11 4334.7317 centraltec@br.surtec.com www.surtec.com.br

Segurança

Produtos químicos incompatíveis para fins de armazenagem

Incompatível com						
Produto Químico	8	6	2	5.1	5.2	Risco N/A
Ácido Acético	Ácido Crômico Ácido Nítrico	Cianetos		Perclórico Peróxidos Permanganatos		
Ácido Sulfúrico		Sais de Cianeto	Clorados Perclorados	Permanganatos		Sais de Lítio Sódio
Ácido Nítrico	Ácido Acético	Ácido Cianídrico Anilinas Cianetos	Líquidos e Gases Inflamáveis			Óxido de Cromo
Carvão Ativo	Ácido Nítrico Ácido Sulfúrico			Permanganatos		Dicromatos
Cianetos	Ácidos					
Cobre			Acetileno		Peróxido de Hidrogênio	
Líquidos Inflamáveis	Ácido Nítrico Bromo	Cloro	Alcoóis, Cetonas, Éteres, Hidrogênio, Flúor	Nitrato de Amônia Peróxidos		Óxido de Cromo IV
Metais Alcalinos (Sódio)						Água, Halogenatos de Potássio, Alcanos, Halogênicos
Prata		Acetileno				Composto de Amônio
Peróxido de Hidrogênio (água oxigenada)		Anilina	Alcoóis, Líquidos Inflamáveis			Cobre, Cromo, Ferro, Sais Metálicos, Compostos Orgânicos, Metais em Pó

Segurança

NR 26 - Sinalização de Segurança (126-000-6)

26.1 Cor na segurança do trabalho.

- 26.1.1 Esta Norma Regulamentadora NR tem por objetivo fixar as cores que devem ser usadas nos locais de trabalho para prevenção de acidentes, identificando os equipamentos de segurança, delimitando áreas, identificando as canalizações empregadas nas indústrias para a condução de líquidos e gases e advertindo contra riscos.
- 26.1.2 Deverão ser adotadas cores para segurança em estabelecimentos ou locais de trabalho, a fim de indicar e advertir acerca dos riscos existentes. (126.001-4 / I2)
- 26.1.3 A utilização de cores não dispensa o emprego de outras formas de prevenção de acidentes.
- 26.1.4 O uso de cores deverá ser o mais reduzido possível, a fim de não ocasionar distração, confusão e fadiga ao trabalhador.
- 26.1.5 As cores agui adotadas serão as seguintes:
 - vermelho;
 - amarelo:
 - branco;
 - preto;
 - azul;
 - verde;
 - laranja;
 - púrpura;
 - lilás:
 - cinza:
 - alumínio:
 - marrom.
- 26.1.5.1 A indicação em cor, sempre que necessária, especialmente quando em área de trânsito para pessoas estranhas ao trabalho, será acompanhada dos sinais convencionais ou da identificação por palavras. (126.002-2/I2)
- 26.1.5.2 Vermelho. (126.003-0 / I2)

O vermelho deverá ser usado para distinguir e indicar equipamentos e aparelhos de proteção e combate a incêndio. Não deverá ser usado na indústria para assinalar perigo, por ser de pouca visibilidade em comparação com o amarelo (de alta visibilidade) e o alaranjado (que significa Alerta).

É empregado para identificar:

- caixa de alarme de incêndio;

- hidrantes:
- bombas de incêndio:
- sirenes de alarme de incêndio;
- caixas com cobertores para abafar chamas;
- extintores e sua localização;
- indicações de extintores (visível a distância, dentro da área de uso do extintor);
- localização de mangueiras de incêndio (a cor deve ser usada no carretel, suporte, moldura da caixa ou nicho);
- baldes de areia ou água, para extinção de incêndio;
- tubulações, válvulas e hastes do sistema de aspersão de água;
- transporte com equipamentos de combate a incêndio;
- portas de saídas de emergência;
- rede de água para incêndio (sprinklers);
- mangueira de acetileno (solda oxiacetilênica).

A cor vermelha será usada excepcionalmente com sentido de advertência de perigo:

- nas luzes a serem colocadas em barricadas, tapumes de construções e quaisquer outras obstruções temporárias;
- em botões interruptores de circuitos elétricos para paradas de emergência.

26.1.5.3 - Amarelo. (126.004-9 / I2)

Em canalizações, deve-se utilizar o amarelo para identificar gases não liquefeitos.

O amarelo deverá ser empregado para indicar "Cuidado!", assinalando:

- partes baixas de escadas portáteis;
- corrimãos, parapeitos, pisos e partes inferiores de escadas que apresentem risco;
- espelhos de degraus de escadas;
- bordas desguarnecidas de aberturas no solo (poços, entradas subterrâneas, etc.) e de plataformas que não possam ter corrimões;
- bordas horizontais de portas de elevadores que se fecham verticalmente;
- faixas no piso da entrada de elevadores e plataformas de carregamento;
- meios-fios, onde haja necessidade de chamar atenção;
- paredes de fundo de corredores sem saída:
- vigas colocadas a baixa altura;
- cabines, caçambas e gatos-de-pontes-rolantes, guindastes, escavadeiras, etc.:
- equipamentos de transporte e manipulação de material, tais como empilhadeiras, tratores industriais, pontes-rolantes, vagonetes, reboques, etc.:
- fundos de letreiros e avisos de advertência;
- pilastras, vigas, postes, colunas e partes salientes de estruturas e equipamentos em que se possa esbarrar;
- cavaletes, porteiras e lanças de cancelas;
- bandeiras como sinal de advertência (combinado ao preto);
- comandos e equipamentos suspensos que ofereçam risco;
- pára-choques para veículos de transporte pesados, com listras pretas.

Listras (verticais ou inclinadas) e quadrados pretos serão usados sobre o amarelo

quando houver necessidade de melhorar a visibilidade da sinalização.

26.1.5.4 - Branco. (126.005-7 / I2)

O branco será empregado em:

- passarelas e corredores de circulação, por meio de faixas (localização e largura);
- direção e circulação, por meio de sinais;
- localização e coletores de resíduos;
- localização de bebedouros;
- áreas em torno dos equipamentos de socorro de urgência, de combate a incêndio ou outros equipamentos de emergência;
- áreas destinadas à armazenagem;
- zonas de segurança.

26.1.5.5 - Preto. (126.006-5 / I2)

O preto será empregado para indicar as canalizações de inflamáveis e combustíveis de alta viscosidade (ex: óleo lubrificante, asfalto, óleo combustível, alcatrão, piche, etc.).

O preto poderá ser usado em substituição ao branco, ou combinado a este, quando condições especiais o exigirem.

26.1.5.6 - Azul. (126.007-3 / I2)

O azul será utilizado para indicar "Cuidado!", ficando o seu emprego limitado a avisos contra uso e movimentação de equipamentos, que deverão permanecer fora de serviço.

- empregado em barreiras e bandeirolas de advertência a serem localizadas nos pontos de comando, de partida, ou fontes de energia dos equipamentos.

Será também empregado em:

- canalizações de ar comprimido;
- prevenção contra movimento acidental de qualquer equipamento em manutencão;
- avisos colocados no ponto de arranque ou fontes de potência.

26.1.5.7 - Verde, (126.008-1 / I2)

O verde é a cor que caracteriza "segurança".

Deverá ser empregado para identificar:

- canalizações de água;
- caixas de equipamento de socorro de urgência;
- caixas contendo máscaras contra gases;
- chuveiros de segurança;
- macas:
- fontes lavadoras de olhos:
- quadros para exposição de cartazes, boletins, avisos de segurança, etc.;
- porta de entrada de salas de curativos de urgência;
- localização de EPI; caixas contendo EPI;
- emblemas de segurança;

____Manual Técnico

- dispositivos de segurança;
- mangueiras de oxigênio (solda oxiacetilênica).

26.1.5.8 - Larania, (126.009-0 / I2)

O laranja deverá ser empregado para identificar:

- canalizações contendo ácidos;
- partes móveis de máquinas e equipamentos;
- partes internas das guardas de máquinas que possam ser removidas ou abertas:
- faces internas de caixas protetoras de dispositivos elétricos;
- faces externas de polias e engrenagens;
- botões de arranque de segurança;
- dispositivos de corte, borda de serras, prensas.

26.1.5.9 - Púrpura. (126.010-3 / I2)

A púrpura deverá ser usada para indicar os perigos provenientes das radiações eletromagnéticas penetrantes de partículas nucleares.

Deverá ser empregada a púrpura em:

- portas e aberturas que d\u00e3o acesso a locais onde se manipulam ou armazenam materiais radioativos ou materiais contaminados pela radioatividade;
- locais onde tenham sido enterrados materiais e equipamentos contaminados:
- recipientes de materiais radioativos ou de refugos de materiais e equipamentos contaminados;
- sinais luminosos para indicar equipamentos produtores de radiações eletromagnéticas penetrantes e partículas nucleares.

26.1.5.10 - Lilás. (126.011-1 / I2)

O lilás deverá ser usado para indicar canalizações que contenham álcalis. As refinarias de petróleo poderão utilizar o lilás para a identificação de lubrificantes.

26.1.5.11- Cinza. (126.012-0 / I2)

- a) Cinza claro deverá ser usado para identificar canalizações em vácuo;
- b) Cinza escuro deverá ser usado para identificar eletrodutos.

26.1.5.12 - Alumínio. (126.013-8 / I2)

O alumínio será utilizado em canalizações contendo gases liquefeitos, inflamáveis e combustíveis de baixa viscosidade (ex. óleo diesel, gasolina, querosene, óleo lubrificante, etc.).

26.1.5.13 - Marrom. (126.014-6 / I2)

O marrom pode ser adotado, a critério da empresa, para identificar qualquer fluído não identificável pelas demais cores.

26.2 - O corpo das máquinas deverá ser pintado em branco, preto ou verde. (126.015-4 / I2)

- 26.3. As canalizações industriais, para condução de líquidos e gases, deverão receber a aplicação de cores, em toda sua extensão, a fim de facilitar a identificação do produto e evitar acidentes. (126.016-2 / I2)
- 26.3.1 Obrigatoriamente, a canalização de água potável deverá ser diferenciada das demais. (126.017-0 / I2)
- 26.3.2 Quando houver a necessidade de uma identificação mais detalhada (concentração, temperatura, pressões, pureza, etc.), a diferenciação far-se-á através de faixas de cores diferentes, aplicadas sobre a cor básica. (126.018-9 / I2)
- 26.3.3 A identificação por meio de faixas deverá ser feita de modo que possibilite facilmente a sua visualização em qualquer parte da canalização. (126.019-7/12)
- 26.3.4 Todos os acessórios das tubulações serão pintados nas cores básicas de acordo com a natureza do produto a ser transportado. (126.020-0 / I2)
- 26.3.5 O sentido de transporte do fluído, quando necessário, será indicado por meio de seta pintada em cor de contraste sobre a cor básica da tubulação. (126.021-9 / 12)
- 26.3.6 Para fins de segurança, os depósitos ou tanques fixos que armazenem fluidos deverão ser identificados pelo mesmo sistema de cores que as canalizações. (126.022-7 / I2)

26.4 - Sinalização para armazenamento de substâncias perigosas.

- 26.4.1 O armazenamento de substâncias perigosas deverá seguir padrões internacionais. (126.023-5 / I3)
- a) Para fins do disposto no item anterior, considera-se substância perigosa todo material que seja, isoladamente ou não, corrosivo, tóxico, radioativo, oxidante, e que, durante o seu manejo, armazenamento, processamento, embalagem, transporte, possa conduzir efeitos prejudiciais sobre trabalhadores, equipamentos, ambiente de trabalho.

26.5 - Símbolos para identificação dos recipientes na movimentação de materiais.

26.5.1 - Na movimentação de materiais no transporte terrestre, marítimo, aéreo e intermodal, deverão ser seguidas as normas técnicas sobre simbologia vigentes no País. (126.024-3/I3)

26.6 Rotulagem preventiva.

- 26.6.1 A rotulagem dos produtos perigosos ou nocivos à saúde deverá ser feita segundo as normas constantes deste item. (126.025-1 / I3)
- 26.6.2 Todas as instruções dos rótulos deverão ser breves, precisas, redigidas em termos simples e de fácil compreensão. (126.026-0 / I3)
- 26.6.3 A linguagem deverá ser prática, não se baseando somente nas propriedades inerentes a um produto, mas dirigida de modo a evitar os riscos resultantes do uso,

220 _____Manual Técnico

manipulação e armazenagem do produto. (126.027-8 / I3)

- 26.6.4 Onde possa ocorrer misturas de 2 (duas) ou mais substâncias químicas, com propriedades que variem em tipo ou grau daquelas dos componentes considerados isoladamente, o rótulo deverá destacar as propriedades perigosas do produto final. (126.028-6 / I3)
- 26.6.5 Do rótulo deverão constar os seguintes tópicos: (126.029-4 / I3)
 - nome técnico do produto;
 - palavra de advertência, designando o grau de risco;
 - indicações de risco;
 - medidas preventivas, abrangendo aquelas a serem tomadas;
 - primeiros socorros;
 - informações para médicos, em casos de acidentes;
 - e instruções especiais em caso de fogo, derrame ou vazamento, quando for o caso.
- 26.6.6 No cumprimento do disposto no item anterior, dever-se-á adotar o seguinte procedimento: (126.030-8 / I3)
 - nome técnico completo, o rótulo especificando a natureza do produto químico. Exemplo: "Ácido Corrosivo", "Composto de Chumbo", etc. Em qualquer situação, a identificação deverá ser adequada, para permitir a escolha do tratamento médico correto, no caso de acidente.
 - Palavra de Advertência as palavras de advertência que devem ser usadas são:
 - "PERIGO", para indicar substâncias que apresentem alto risco;
 - "CUIDADO", para substâncias que apresentem risco médio;
 - "ATENÇÃO", para substâncias que apresentem risco leve.
 - Indicações de Risco As indicações deverão informar sobre os riscos relacionados ao manuseio de uso habitual ou razoavelmente previsível do produto. Exemplos: "EXTREMAMENTE INFLAMÁVEIS", "NOCIVO SE ABSORVIDO ATRAVÉS DA PELE", etc.
 - Medidas Preventivas Têm por finalidade estabelecer outras medidas a serem tomadas para evitar lesões ou danos decorrentes dos riscos indicados. Exemplos: "MANTENHA AFASTADO DO CALOR, FAÍSCAS E CHAMAS ABERTAS" "EVITE INALAR A POEIRA".
 - **Primeiros Socorros** medidas específicas que podem ser tomadas antes da chegada do médico.

Ministério dos Transportes Agência Nacional de Transportes Terrestres Resolução nº 420, de 12 de fevereiro de 2004

"As informações à seguir são básicas e abordam apenas parte desta resolução"

ANEXO À RESOLUÇÃO Nº 420 DE 12 DE FEVEREIRO DE 2004

Instruções Complementares ao Regulamento do Transporte Terrestre de Produtos Perigosos

Estabelece isenções admitidas para determinados produtos, bem como apresenta prescrições relativas às operações de Transporte, gerais e particulares, para cada classe de risco. Determina, também, cuidados a serem observados e as disposições relativas a embalagens, Contentores Intermediários para Granéis (IBCs), embalagens grandes e tanques portáteis.

Tais exigências, gerais ou particulares, não esgotam o assunto, nem limitam ou eximem os agentes envolvidos nas operações de transporte e manuseio das respectivas responsabilidades na legislação pertinente.

Capítulo 3.4

Produtos Perigosos em Quantidades Limitadas

3.4.3 Quantidades limitadas por unidade de transporte

Para quantidades iguais ou inferiores aos limites de quantidade por unidade de transporte, constante na coluna 8, da Relação de Produtos Perigosos, independentemente das dimensões das embalagens, dispensam-se as exigências relativas a:

- a) Rótulos de risco e painéis de segurança afixados ao veículo;
- Porte de equipamentos de proteção individual e de equipamentos para atendimento a situações de emergência, exceto extintores de incêndio, para o veículo e para a carga, se esta o exigir;
- Limitações quanto a itinerário, estacionamento e locais de carga e descarga;
- d) Treinamento específico para o condutor do veículo;
- e) Porte de ficha de emergência;
- f) Proibição de se conduzirem passageiros no veículo.

Manual Técnico

- 3.4.3.2 Permanecem válidas as demais exigências regulamentares, em especial as que se referem a:
 - As precauções de manuseio (carga, descarga, estiva);
 - Às disposições relativas à embalagem dos produtos e sua marcação e rotulagem, conforme estabelecido neste Regulamento.
- 3.4.3.3 A quantidade máxima de um produto que pode ser colocada em uma unidade de transporte, em cada viagem, é a estabelecida na relação de produtos perigosos (coluna 8). No caso de, num mesmo carregamento, serem transportados dois ou mais produtos perigosos diferentes, prevalece, para o carregamento total, considerados todos os produtos, o valor limite estabelecido para o produto com menor quantidade isenta.
- 3.4.3.4 A palavra "zero" colocada na coluna 8 indica que o transporte do produto não está dispensado das exigências descritas em 3.4.3.1.

PP7 - MANUAL DE AUTOPROTEÇÃO PRODUTOS PERIGOSOS MANUSEIO E TRANSPORTE RODVIÁRIO

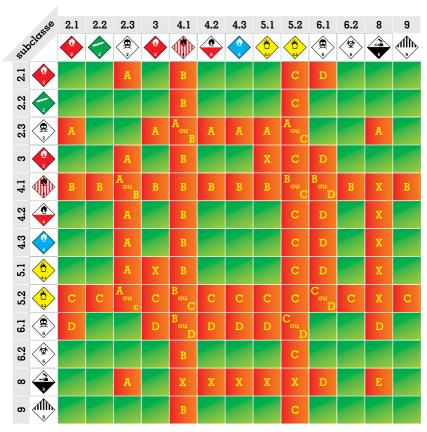
7^α Edição - Ano 2004

Incompatibilidade Específica

A incompatibilidade entre os produtos é tratada na NBR 14619 da ABNT, que apresenta diversas considerações sobre o assunto, motivo pelo qual é necessário consultá-la constantemente para a expedição correta.

Os critérios definidos na norma retrocitada são aplicáveis a cargas fracionadas e a granel de produtos e de resíduos perigosos, mesmo em se tratando de quantidade isenta ou de pequenos recipientes, independente das exceções previstas pelo capítulo 3.4 da resolução 420/04 ANTT, em um mesmo veículo, bem como durante o eventual armazenamento temporário necessário para a execução logística do transporte.

Neste último caso, o responsável pelo transporte do produto somente deve observar as disposições da NBR 14619, caso não seja possível estabelecer procedimentos de forma a garantir que os produtos perigosos incompatíveis estejam armazenados de forma segura que no caso de um vazamento, não possa entrar em contato, provocando uma reação química.


Os critérios de incompatibilidade previstos na norma da ABNT não são exclusivos, sendo que os embarcadores devem, de acordo com as características específicas dos produtos perigosos ou não perigosos para o transporte, fazer as considerações necessárias e aplicar relações de incompatibilidade não previstas nas tabelas da norma, desde que mais rígidas;

Devem também criar relações de incompatibilidade química dentro de uma mesma classe ou subclasse de produtos perigosos, como exemplo a incompatibilidade entre ácidos e bases (classe 8-Corrosivos), sabiamente incompatíveis quimicamente;

Em qualquer caso, o embarcador deve informar ao transportador por escrito, podendo ser por meio da ficha de emergência, rótulo de segurança, ficha de segurança (FISPQ) e/ ou qualquer outro documento, sobre a incompatibilidade que seus produtos apresentam com outros produtos, previstos ou não em normas da ABNT.

Os riscos subsidiários de produtos perigosos, quanto existentes, também devem atender aos critérios de incompatibilidade indicados na tabela a seguir.

Para o transporte de produtos explosivos, deve-se observar o estabelecimento pela resolução 420/04 ANTT, item 2.1.2.

Legenda

- X = Incompatível;
- A = Incompatível para produtos da subclasse 2.3 que apresentam toxicidade por inalação LC50<1000 ppm;
- B = Incompatível apenas para produtos da subclasse 4.1 com os seguintes números ONU: 3221, 3222, 3231 e 3232
- C = Incompatível apenas para os produtos da subclasse 5.2 com os seguintes númeroONU: 3101, 3102, 3111 e 3112;
- D = Incompatível apenas para os produtos da subclasse 6.1 do grupo de Embalagem I;
- E = Verificar as incompatibilidades dentro de uma mesma classe de risco.

Notas

- l Cianetos ou misturas de cianetos não devem ser transportados com ácidos.
- 2 No caso da subclasse 2.3, a toxicidade inalatória (LCSO) deve estar indicada na ficha de emergência do produto perigoso (ver 4.1.3.4 c) da NBR 7503:2003).
- 3 A incompatibilidade química é indicada pela letra X. No caso das letras A, B, C e D, deve ser consultada a legenda acima.

224 _____Manual Técnico

DECRETO Nº 96.044, DE 18 DE MAIO DE 1998 PP7 - REGULAMENTO PARA O TRANSPORTE RODOVIÁRIO DE PRODUTO PERIGOSO

Capítulo II

Das condições do transporte

Seção I

Dos veículos e Equipamentos

Art. 2°. Durante as operações de carga, transporte, descarga, transbordo, limpeza e descontaminação os veículos e equipamentos utilizados no transporte de produtos perigosos deverão portar rótulos de risco e painéis de segurança específicos, de acordo com as NBR 7500 e NBR 8286.

Parágrafo único. Após as operações de limpeza e completa descontaminação dos veículos e equipamentos, os rótulos de risco e painéis de segurança específicos, de acordo com a NBR 7500 e NBR 8286.

Parágrafo único. Após as operações de limpeza e completa descontaminação dos veículos e equipamentos, os rótulos de risco e painéis de segurança serão retirados.

Art. 3°. Os veículos utilizados no transporte de produtos perigosos deverão portar o conjunto de equipamentos para situações de emergência indicado por Norma Brasileira ou, na inexistência desta, o recomendado pelo fabricante de produto.

Art. 5°. Para o transporte de produto perigoso a granel os veículos deverão estar equipados com tacógrafo, ficando os discos utilizados à disposição do expedidor, do contratante, do destinatário e das autoridades com jurisdição sobre as vias, durante três meses, salvo em caso de acidente, hipótese em que serão conservados por um ano.

Resolução Nº 87, de 4 de Maio de 1999, artigo 3º Fica mantida a obrigatoriedade do uso do registrador inalterável de velocidade e tempo para os veículos de transporte de cargas de produtos perigosos, escolares e de passageiros com mais de 10 (dez) lugares (ônibus e Microônibus).

Portanto, é obrigatório o uso de tacógrafo para transporte de produtos perigosos, independente se é carga fracionada, granel e etc.

Seção II

Da carga e seu acondicionamento

Art 6°. O produto perigoso fracionado deverá ser acondicionado de forma a suportar os riscos de carregamento, transporte, descarregamento e transbordo, sendo o expedidor responsável pela adequação do acondicionamento segundo especificações do fabricante.

Parágrafo 2º. No transporte de produto perigoso fracionado, também as embalagens externas deverão estar rotuladas, etiquetadas e marcadas de acordo com a correspondente classificação e tipo de risco.

Art 7°. É proibido o transporte, no mesmo veículo ou container, de produto perigoso com outro tipo de mercadoria , ou com outro produto perigoso, salvo se houver compatibilidade entre os diferentes produtos transportados.

lº Consideram-se incompatíveis, para fins de transporte conjunto, produtos que, postos em contato entre si, apresentem alterações das característica físicas ou químicas originais de qualquer deles, gerando risco de provocar explosão, desprendimento de chama ou calor, formação de compostos, misturas, vapores ou gases perigosos.

 2° É proibido o transporte de produtos perigosos, com risco de contaminação, juntamente com alimentos, medicamentos ou objetos destinados a uso humano ou animal ou, ainda, com embalagens de mercadorias destinadas ao mesmo fim.

Seção V

Do pessoal envolvido na operação do transporte

Art 15. O condutor de veículo utilizado no transporte de produto perigoso, além das qualificações e habilitações previstas na legislação de trânsito, deverá receber treinamento específico, segundo programa a ser aprovado pelo Conselho Nacional de Trânsito (CONTRAN), por proposta do Ministério dos Transportes.

Art 19. O condutor não participará das operações de carregamento, descarregamento e transbordo da carga, salvo se devidamente orientado e autorizado pelo expedidor ou pelo destinatário, e com a anuência do transportador.

Art 20. Todo pessoal envolvido nas operações de carregamento, descarregamento e transbordo de produto perigoso usará traje e equipamento de proteção individual, conforme normas e instruções baixadas pelo Ministério do Trabalho.

Seção VI

Da documentação

Art 22. Sem prejuízo do disposto na legislação, de transporte, de trânsito e relativa ao produto transportado, os veículos que estejam transportando produto perigoso ou os equipamentos relacionados com essa finalidade, só poderão circular pela vias públicas contendo os documentos obrigatórios.

Para a SurTec certificar-se e garantir o total atendimento aos itens legislativo, realiza um check list no momento da coleta, autorizando a retirada e transporte de seus produtos perigosos apenas quando o Contratado esteja de acordo com a Legislação.

Capítulo IV

Dos deveres, obrigações e responsabilidades

Seção II

Do contratante, do Expedidor e do Destinatário

Art 32. O contratante do transporte deverá exigir do transportador o uso do veículo e equipamento em boas condições operacionais e adequados para a carga a ser transportada, cabendo ao expedidor, antes de cada viagem, avaliar as condições de segurança.

Art 35. No carregamento de produtos perigosos o expedidor adotará todas as precauções relativas à preservação dos mesmos, especialmente quanto à compatibilidade entre si.

Instruções VDA

Verband der Automobilindustrie

"As informações aqui detalhadas são protegidas por direitos autorais e são de propriedade da Verband der Automoliindustrie e.V. (VDA) da Republica Federal da Alemanha. À SurTec do Brasil foi especialmente concedida a autorização de publicação do texto na íntegra. Qualquer cópia, tradução, microfilmagem e armazenamento por meio eletrônico destas informações estão proibidas."

Exclusão de responsabilidade

Este volume VDA contém instruções que estão disponíveis para todos. Todos que a aplicarem serão responsáveis por assegurar que ela esteja sendo usada corretamente em cada caso.

Este volume VDA leva em consideração o estado tecnológico da arte, circulando em tempo hábil. A implementação das recomendações VDA não exclue ninguém da responsabilidade de suas próprias ações. A este respeito todos agem sob seu próprio risco.

Se durante o uso das recomendações VDA, forem encontrados erros ou possibilidade de má interpretação, será necessário que isto seja notificado à VDA imediatamente, para que qualquer falha possa ser corrigida.

Normas de referência

A citação de uma norma identificada pelo seu número DIN e a data de circulação são reproduzidas com a permissão do DIN Deutsches Institut für Normung e. V.

A versão com a mais recente publicação, disponível pelos editores Beuth Verlag GmbH, 10772 Berlin, é definitivo para o uso da norma.

Direitos Autorais

Esta publicação, incluindo todas suas partes, está protegida por direitos autorais. Qualquer uso fora dos limites restritos da lei de direito autorais, não será permitido sem o consentimento do VDA-QMC e é passível de processo. Isto é aplicado em particular para cópias, traduções, microfilmagem e o arquivamento ou processamento em sistemas eletrônicos.

Prefácio

Funcionários das seguintes organizações participaram da criação deste documento:

Adam Opel A, Alcan Singen GmbH, Audi AG, BMW AG, DECOMA Germany GmbH Werk Prometal. DURA Automotive Body & Glass Systems GmbH, Erbslöh Aktiengesellschaft, IBB International, Iralco Ltda., JAC Products Holding Europa GmbH, Carl Kittel Autoteile GmbH, Linden GmbH & Co. KG, SAM Süddeutsche Aluminium Manufaktur mbH, Silmet Societa Italiana Lavorazioni Metalli s.p.a., Volkswagen AG, Walter Klein GmbH & Co. KG, Wiegand GmbH, Zentralverband Oberflächentechnik.

Oberursel, junho 2004

Índice (conteúdo)

ITEM	ASSUNTO
1	Finalidade
2	Aplicação
3	Raio de Ação
4	Zonas de Inspeção
5	Condições de Inspeção
5.1	Posição
5.2	Condições de Iluminação
5.2.1	Brilho, Cor e Temperatura
5.2.2	Ângulo de Incidência da Fonte de Luz
5.2.3	Orientação da Fonte de Luz
5.3	Distância de Observação
5.4	Período de Observação
5.5	Metas de Concordância
5.5.1	ppm e Período de Validade
5.5.2	Nível de Qualidade
5.5.3	Determinando o Nível de Qualidade
5.5.4	Especial Concordância em ppm
6	Descrição das Características e Reconhecimento de Defeitos
7	Critério de Aceitação
7.1	Características Aceitáveis
7.2	Características Quantificáveis
7.2.1	Classificação
7.2.2	Densidade e Freqüência Aceitáveis
8	Método de Avaliação
9	Miscelanias
10	Anexos
10.1	Tabela de amostras das características onde tolerâncias podem ser aplicadas
10.2	Tabela de amostras das características quantificáveis - Ver tabela 10.1
10.2.1	Classificação por tamanho e freqüência permitida
10.2.2	Classificação do espaço mínimo entre defeitos
10.3	Bibliografia

Manual Técnico

1- Finalidade

- 1.1- Este documento VDA serve com um ponto de partida para as negociações bilaterais entre a OEM e o fornecedor, com respeito a especificação de superfícies decorativas, para que os resultados das negociações possam ser acordadas por escrito no contrato individual.
- 1.2- Ele também fornece uma clara e transparente descrição dos produtos decorativos superficiais(conhecidos como superfícies significativas), tanto que nenhum problema de processamento ocorra junto aos clientes ou aos fornecedores como resultado de falhas ou falta de clareza nas normas.
- 1.3- Para as situações envolvidas no processo, estas instruções VDA representam um documento de treinamento, para assegurar conformidade, dentro da aplicação, de referencias as quais tenham sido acordadas.

2- Aplicação

Este documento VDA cobre superfícies decorativas de peças de fixação e peças funcionais de partes internas e externas dos automóveis.

A área de aplicação é definida como qualquer área do veículo a qual seja visível, quer sentado ou em pé, no curso normal do uso de um veículo.

3- Raio de Ação

Inicialmente, os seguintes tipos de produtos são afetados:

Fitas decorativas (Ex: grampos, frisos, armações, parachoques e chapas protetoras laterais, grades de radiador e grades decorativas)

Painéis (incluindo espelhos)

Tampas

Elementos atuadores (Ex: maçanetas, alavancas, interruptores, trincos)

Chapas para moldes de teto

Porta malas, bagageiros

Emblemas, letreiros, placas

O documento também considera componentes e superfícies relacionadas de peças complementares. Qualquer associação com pontos relacionados a materiais para a superfície visível são levados em conta neste documento VDA, somente até certo ponto que não venham excluir ou contradizer as típicas normas automobilísticas industriais.

Em termos de tipo de superfície, este documento VDA considera os seguintes processos de fabricação:

Anodização, Pintura à pó (EPS), Pintura líquida, Extrusão, Moldes de Injeção Galvanização, Processos à Plasma (Evaporação; Sputter; CVD; PVD)

Este documento VDA não leva em consideração todos os aspectos de inspeção de cores com respeito as peças pintadas . Com relação a isso, o leitor é submetido às diretrizes existentes publicada pela OEM's, pelas associações de classe, bem como pelas relevantes normas internacionais.

4- Zonas de Inspeção

A zona de inspeção deve ser especificada no desenho do componente e ou com o modelo de dados.

A tabela seguinte ajusta uma possível diferenciação entre as zonas, baseada nos componentes e a importância do defeito.

Zona	Definição	Posição
A	Superfícies, cujas áreas sejam imediatamente visíveis	Externa: Veículo acima da linha de cintura do observador, prolongado se apropriado para cobrir posicionamento específico.
		Interna: Todas as peças na linha direta de visão das pessoas no veículo.
В	Superfícies que estejam em áreas escondidas, ou não são percebidas em posição normal (Arco de Observação < 45°)	Externa: Veículo abaixo da linha de cintura do observador abaixo do nível superior de parachoques, bem como elementos funcionais (tampas abertas,
		portas, etc.)
		Interna: Todas as superfícies não imediatamente notadas.
C	Superfícies as quais são cobertas após	
(opcional)	montagem	

A funcionalidade de superfícies cobertas não pode ser prejudicada.

5- Condições de Inspeção

5.1- Posição

A inspeção de peças decorativas devem ser feitas de acordo com o ângulo de ajustamento e a posição do item no veículo, ou em sua posição funcional relativa a principal superfície das peças. Como regra geral, isto requer nenhuma reflexão da peça.

5.2- Condições de Iluminação

5.2.1- Brilho e temperatura da cor

Acessando os pontos característicos, uma fonte de luz do dia para avaliação de aspecto é necessária. Alternativamente, uma fonte de luz artificial equivalente pode ser usada. Para assegurar reprodutibilidade em qualquer discussão, a fonte artificial de luz deverá preferencialmente ter as seguintes especificações:

Nível de Iluminação = 1000 LUX

Cor da temperatura como obtida de tubos fluorescentes tipo DL 65 $\,$

Para exibições de metamerismo, o tipo de luz deveria ser a TL 84.

230 _____Manual Técnico

Nota:

Deve ser lembrado que certos pontos característicos não podem ser detectados sob luz artificial, enquanto outros não são detectados sob luz natural, (vide tabela na sessão 6). Em tais casos, ajustes especiais devem ser acordados e especificados.

5.2.2- Ângulo de incidência da fonte de luz

Na preparação de uma área de inspeção ou quando transportando aos pontos de checagem da produção, a fonte artificial de luz deve estar verticalmente posicionada à cerca de 120 cm acima do objeto a ser examinado.

5.2.3- Orientação da Fonte de Luz

Na eventualidade de qualquer questionamento onde os tubos fluorescentes deverão ser usados, estes devem ser ajustados paralelos ao eixo longitudinal dos veículos.

5.3- Distância de Observação

Ao inspecionar uma peça sem auxílio ótico, o inspetor deverá manter um distância em torno de 50 a 70 cm do objeto a ser examinado. (O comprimento de um braço estendido).

5.4- Período de Observação

Na inspeção dos níveis de qualidade e dependendo da zona envolvida, os seguintes períodos de observação deverão ser mantidos:

Zona de inspeção com o mais alto grau de exigência $m ilde{a} ilde{x} ilde{5} ilde{s}/400 ext{ cm}^2$ Zona de inspeção com menor exigência $m ilde{a} ilde{x} ilde{3} ilde{s}/400 ext{ cm}^2$

Quando na preparação de uma gama particular de peças é sensato especificar o período de observação em segundos com relação a superfície envolvida.

5.5- Metas de Concordância

5.5.1- ppm e Período de Validade

Quando a qualidade dos artigos são boas, os defeitos só ocorrem muito raramente e são usualmente medidos em ppm - partes por milhão - . Nestas situações é razoável acordar uma meta de "Defeito Zero". Em termos matemáticos e fisicos, esta qualidade objetiva pode ser somente aproximada e portanto para uma direção apenas. Na prática, tem sido mostrado ser vantajoso ajustar a tão chamada "Metas Intermediárias", durante o processo de direcionar para o "Zero Defeitos". Se tais metas são aceitas em uma inspeção de qualidade de fornecimento, deverá ser acordado entre o fabricante e o cliente, o sequinte:

Média de falhas, p.ex. em ppm

Área de aplicação, (características, período de tempo, bem como um período de agrantia, entregas especiais, etc.)

5.5.2- Nível de Qualidade

De modo geral o cliente não está interessado no nível de qualidade, ele está mais preocupado é com a porcentagem dos defeitos entregues. É sensato, por essa razão, usar este fator em acordos e salientar ao cliente que outras influências, tais como a habilidade humana de se fazer uma inspecão, também necessita ser levada em conta. Assim a detectibilidade de estruturas quando sujeitas à inspecão visual, bem como a confianca da decisão tomada, dependerá de vários parâmetros, em virtude do olho humano, mesmo sob boas condições de iluminação, não poder detectar mais de 35 linhas por grau de ângulo. Isto pressupõe uma qualidade normal de visão, boas condições de iluminação e nenhuma influência negativa mental.

Qualquer julgamento relacionando para características subjetivas irá portanto ser comparável somente sob restrita condição definida.

Considerando a habilidade humana de discriminação na qualidade de verificação visual, será portanto necessário especificar um fator Pd para uma inevitável porcentagem de peças defeituosas as quais escapariam da detecção. Dentro do foco deste documento VDA, este fator pode ser determinado como:

Pd = 0.003 o que é equivalente à 0.3%

Para esta porcentagem em um lote, não será possível diferenciar entre peças boas e peças defeituosas. Sendo que peças defeituosas são falhas - tais peças são definidas como aquelas, onde os desvios detectados superam a tolerância definida nesta especificação.

5.5.3- Determinando o Nível de Qualidade

O fator de referência aqui é o número atual de peças defeituosas no lote. Isto deve ser acordado como apropriado e o fator Pd deve ser levado em consideração por ambas as partes.

Se o lote é inspecionado pelo número de peças defeituosas em amostras aleatórias, o grau de confiança, (Ex: 95%), deve também ser levado em consideração.

O tamanho de amostras eventuais "n" deve ser ajustado com a quantidade total de peças entregues, em virtude do nível de rejeitos, usualmente levados em consideração na linha de montagem, sendo submetido à todas as peças que tenham sido recebidas.

5.5.4- Especial Concordância em ppm

Quando uma média especial de falhas é acordada, esta poderá ter conseqüências em termos de custos, a qual deverá ser regulada em condições individuais e suplementares.

6- Descrição das Características e Reconhecimento dos Defeitos

N°	Característica	Fonte*	Definição
1	Deformação	5	Desalinhamento onde peças são conformadas
			(Ex: por vulcanização ou moldagem excessiva)
2	Marcas de Queima	1, 6	Aspecto acetinado, desagregado da superfície,
			causado pela separação dentrítica na área
			limite atual (referido como "brotado" quando
			elas são grandes)
3	Dentes	6, 8	Depressões, tipo bolhas chatas causadas por
			alta pressão
4.α	Bolhas	2,3,6, 7	a) Geralmente redonda, até saliente (oca por
			dentro)
4.b	Crateras	2,3,6, 7	b) Geralmente circular, cratera tipo depressão
			no revestimento final ou intermediário.
			Caracterizada pela borda levantada.
5	Marcas de Impressão	6,8,10	Distribuídas irregularmente, pequenos pontos
			ou depressões da superfície, sobre áreas muito
			limitadas, causadas pela compressão de corpos
			estranhos
6	Fissuras de Anodização	1	Micro fissuras: pequenos traços lineares no
			revestimento anodizado, causado por excessiva
			deformação local do componente, ou camada
			excessiva crescida durante a anodização.
7	Tinta nevoenta	3	Partículas finas de tinta, tipo pó, sobre
			a superfície, não distribuída de maneira
			homogênea no filme de tinta; gotas, tipo
			partículas de tinta gotejadas sobre o filme de
			tinta.
8	Diferenças de cor	2,3,6	Desvios de cor sobre a superfície, em
			comparação com zonas vizinhas da peça ou
			comparado com amostra padrão. Isto resulta
			de:
			a) Influência do material
			b) Influência do processo
			c) Impressão subjetiva: saturação, brilho,
			pureza, nível de brilho, profundidade, estrutura
			da superfície.
9	Bordas dilatadas	2,3	Um espessamento da camada de tinta
			(saliência) sobre as bordas dos componentes,
			causada supostamente por tensões superficiais.
			O efeito se relaciona inicialmente com o raio
			da borda ou o posicionamento do componente
			durante o processo.
10	Manchas	1,2,3,6,7	Opacidade localizada e exatamente delineada
			na superfície, causada, por exemplo por sujeira,
			corrosão em pontos ou aninhados e/ou manchas
			de secagem.
11	Rebarbas em linhas de separação	5,6	Rebarbas que podem ocorrer onde houver um
		'	inevitável desencontro entre as partes de uma
			ferramenta (Ex: resíduos de plásticos em peças
			injetadas). Também pode ser causado pelo uso.
12	Variações de brilho	1,3,6,7	Lustro ou diferença de brilho comparado com a
			amostra padrão ou nível especificado, em certas
			áreas ou sobre a superfície como um todo.
			Projeção de arestas vivas de zonas de borda
13	Rebarbas	2,3,8	de processos anteriores (Ex: rebarbas de
10	10241043	2,5,0	estampagem em bordas cortadas, tinta
			abrasiva.
			ubiusivu.
	•		•

14	Granulação	1,3,6	Efeito visual (Ótico) o qual pode ocorrer por reflexão difusa sobre interfaces entre estruturas
			diferentes (Ex: granulometria atacada).
15	Riscos superficiais	6.10	Linhas de danos extremamente finas
16	Pontos de contato (causado pelo processo)	1,2,6,7	Pequenas áreas, usualmente pequenos pontos
			onde a pintura ou revestimentos estão ausentes,
			(em áreas não normalmente visíveis), causadas
			por grampos, gancheiras etc)
17	Riscos, traços	6,10	Linhas de danos, causadas por mau manuseio,
17	hiscos, iraços	0,10	
			(Ex: durante a remoção de peça)
18	Escorrimento de tinta	2,3	Traços de tinta sobre ou abaixo da camada
			superficial em superfície vertical, (geralmente
			nas vizinhanças de ranhuras, furos, dobras).
19	Lentes - Tipo marcas de tinta	2,3	Distorções em superfícies pintadas, as
	•		quais podem ser vistas, mas não sentidas:
			escorrimento ou riscos de tinta em estágios
			anteriores.
	* 1 1 C	0.0.0	
20	Áreas de camada fina	2,3,6	Revestimento final inadequado, (o substrato
			pode ser visto através do revestimento).
21	Fissuras	1,6	Rachaduras no revestimento galvânico,
			causada por deformação ou tensão na peça,
22	Micro porosidade	2,3	Crateras muito pequenas, micro poros
23	Manchas de níquel	6	Zonas amareladas em área de contato e em
20	Manchas de Inquei	"	área de baixa densidade de corrente.
24	Course de la	000	
24	Casca de laranja	2,3,6	Uma aparência tipo rugosa ou ondulada sobre
			a superfície pintada, a qual pode conter uma
			textura; uma tinta granulada com a estrutura de
			uma casca de laranja.
25	Linhas de óxido	11	Definição: falhas causadas por inclusões de
			óxidos e/ou linhas de óxidos.
			Descrição & Efeitos: linhas brancas ou cinzas,
			tipo lápis, escorrendo na direção em que a peça
			foi formada ou laminada. O grau de visibilidade
			depende do tipo e da quantidade de óxidos
			oclusos.
26	Bolhinhas/inclusões	1,7	Contaminação dentro do filme de tinta, tal como
			pó ou penugem, a qual se estende por algumas
			áreas da superfície pintada ou interfere com o
			crescimento da camada de tinta.
27	Problemas de pigmentação	2,3	Desorientação dos pigmentos, (partículas
27	i iobiemas de pigmemação	2,0	
	D.11		metálicas)
28	Polimentos diversos	6,9	Categoria coletiva para defeitos que não são
			encontrados com freqüência, os quais formam
			uma pequena porcentagem de defeitos.
28.α	Pontilhamento		Manchas poligonais causadas por resíduos de
			materiais os quais tenham sido polidos.
28.b	Fosqueamento		Fosqueamento após abrilhantamento
40.D	rosqueumemo		
			eletrolítico, causado por excessivo calor
			localizado; superfície não polida.
28.c	Hologramas		Defeitos de polimento com efeitos de 3D,
			(especialmente em cores escuras de tinta)
28.d	Manchas de polimento		Restrita em áreas circulares com superfícies
			mais lisas do que as áreas circunvizinhas.
29	Polimento em forma de peixe ou	6,9,11	Depressões em uma forma similar a um peixe,
40	rabo de cometa	0,5,11	
	rabo de cometa		causado por um corpo estranho durante o
			processo de polimento, um poro ou outro pré
			condicionamento de processos anteriores, tais
			como lixamento.
	I	I	_

_____Man

30	Linhas de polimento	6.9	Muito finas, acúmulo de linhas visíveis
00	Immas de pomiento	0,0	localizadas, causadas pelo processo de
			polimento, (pasta ou disco de polimento
			incorretos).
31	Poros	2,3,6	Pequenos buracos, visíveis a olho nu, na camada
			superficial, algumas vezes penetrando no
			material base.
32	Indicação de linhas de solda ou costura	4,8	Definição: sinais de costura longitudinal,
			causado por pressão de extrusão, operações de
			solda, etc.
			Descrição & Efeitos: riscos estreitos que correm no sentido em que a peça foi formada, onde a
			área é mais clara ou mais escura que o material
			em volta, dependendo das condições de luz.
			Estas podem ocorrer associadas com marcas
			do tipo degrau ou perfurante. A indicação de
			linhas de solda ou de costura são causadas
			por processos de fabricação e são inevitáveis,
			entretanto, sua aparência pode ser influenciada.
33	Marcas de decapagem	6,10	Localizadas, rugosidade plana da superfície,
			geralmente se apresentam com diferentes níveis
			de brilho.
34	Marcas de degrau	4,6,8	Faixas correndo em paralelo na direção da
			marca de impressão, sobre o comprimento do
			perfil, geralmente na forma de degraus, os quais são especialmente visíveis após o processo de
			revestimento.
35	Estrias, riscos	8.11	Concentração de riscos com um efeito eletro
00	Estitus, issues	J,11	potenciostático, causado pelo pré tratamento
			para anodização e resultado de uma segregação
			por falta de material.
36	Granulação	6	Leve granulação de uma superfície galvanizada,
			parecido com casca de laranja sobre áreas
37	Ondulações	6.8.9.11	pintadas. Marcas paralelas tipo onda sobre a superfície
3/	Onduiações	0,0,3,11	do painel ou perfil, transversal a direção da
			laminação ou compressão, a qual pode ser
			vista em posições especiais de observação, (Ex:
			olhando no espelho retrovisor, a reflexão em
			uma direção longitudinal junto a um ângulo de
			observação pouco profundo).
38	Queimas, névoas,	9	Quando polida: áreas localizadas tipo
			acetinadas, opacas ou nevoentas com
			transferência difusa de uma área para outra.
		3	Quando pintada: áreas parcialmente
			perceptíveis, claras ou escuras no interior de um acabamento de pintura metálica com
			transferência difusa de uma área para outra.
		6,7	Áreas opacas dentro de toda a superfície, com
		,,	transferência difusa de uma área para outra.
39	Variações na espessura de camada	6,12	Surgimento de uma inadequada distribuição
			de densidade de corrente elétrica durante a
			galvanização, (6).
40	Deformação local	6,12	Depressões visíveis da superfície, causado por
			elementos pré-montados. Tais como: suportes ou
			frisos, (6).
			Areas deformadas, causadas por peças de pobre geo-
			metria ou inadequada compensação de recalque, (12)

41	Linhas de fluxo de moldagem	6	Marcas visíveis de fluxo de vapor em forma de estrias sobre peças plásticas, num ponto de concentração de diferentes direções de fluxo.
42	Marcas de sucção	6,12	Surge do contato da superfície com o bocal de borracha de sucção, marcando visivelmente a superfície causada pela deposição do bocal de sucção durante a pegada ou colocação da peça.
43	Linha de conexão	12	Surge durante a convergência de 2 fluxos em volta de uma cavidade ou pino, (linha de fluxo de moldagem).
44	Inclusão de umidade	12	Material úmido, devido uma má preparação do material, espalhando umidade condensada sobre superfícies como um filme fino ou glóbulos.

(*) Fonte:

- 1-Anodização/Oxidação
- 2-Pintura à pó (EPS)
- 3-Pintura líquida
- 4-Extrusão
- 5-Fundição por injeção
- 6-Galvanização
- 7-Processos à plasma (Evaporação térmica, Sputtering, CVD, PVD)
- 8-Conformação
- 9-Polimento
- 10-Montagem/Embalagem/Manuseio
- l l-Falta de material
- 12-Processamento de plásticos

7- Critérios de Aceitação

A tolerância máxima conseguida, sob condições de produção total, deveria ser especificada para as características relacionadas ao produto, definidas na seção 6 acima. Preferencialmente, isto deveria tomar a forma de um processo de acordo bilateral entre o cliente e o fornecedor, se possível antes de orçamentos e cotações.

7.1- Características Aceitáveis

Um exemplo está dado na tabela 10.1 no anexo deste documento.

7.2- Características Quantificáveis

7.2.1- Classificação

Um exemplo de definição qualitativa é dado na tabela 10.2 no anexo deste documento.

7.2.2- Densidade/Frequência Aceitável

Um exemplo de definição quantitativa é dado na tabela 10.2 no anexo deste documento.

8- Método de Avaliação

Qualquer inadequação, detectada dentro do período de observação, deverá ser comparado com o critério de aceitação.

Em caso de dúvida, a superfície deverá ser examinada com uma lente de aumento com uma ampliação de 8 a 10 vezes.

9- Miscelânias

Em ordem de obter o critério de aceitação ajustado na seção 7, esta especificação deverá ser aceita levando em consideração a origem do processo para produtos semi acabados a acessórios, bem como fornecedores de ítens de acabamentos superficiais, com o objetivo de definir especificações no tempo certo, particularmente com relação aos produtos semi acabados.

10- Anexo

As tolerâncias para as características mostradas neste anexo, representam as tolerâncias que podem ser conseguidas com um grau de aceitabilidade econômica sob as condições de produção total com o presente estado de tecnologia. Onde apropriadamente e dependendo do produto, eles poderão tomar como base para cálculos iniciais e podem formar a base para acordos individuais em ppm cobrindo produção em série ou em pré- série.

10.1 Tabela de amostra das características onde a tolerância pode ser aplicada.

N°	Característica	Fonte*	Zona A	Zona B
1	Deformação	5	Pode ser visto e sentido ± 0,3 mm	± 0,7 mm
2	Marcas de Queima	1,6	Conforme limites da amostra	Conforme limites da amostra
3	Dentes	6, 8	Não permitido se visível numa	Não permitido se visível
			distância de 800 mm ou maior	numa distância de 1200 mm
				ou maior
4.α	Bolhas	2,3,6, 7	Conforme limites da amostra	Conforme limites da amostra
4.b	Crateras	2,3,6, 7		
5	Marcas de Impressão	6,8,10	d ≤ 0,7 mm: máx. 2 impressões	d ≤ 1,0 mm: máx. 4
			dentro de um espaço de 400 mm.	impressões dentro de um
				espaço de 300 mm.
6	Fissuras de Anodização	l	Conforme limites da amostra	Conforme limites da amostra
_ 7	Tinta nevoenta	3	Conforme limites da amostra	Permitido
_ 8	Diferenças de cor	2,3,6	Desvio como limite da amostra	Conforme limite da amostra
_ 9	Bordas dilatadas	2,3	Conforme limites da amostra	Permitido
10	Manchas	1,2,3,6,7	Não permitido	Não permitido
11	Rebarbas em linhas de separação	5,6	Máx: + 0,3 mm	Máx. 0,5 mm
12	Variações de brilho	1,3,6,7	Conforme limite da amostra	Conforme limite da amostra
13	Rebarbas	2,3,8	Conforme limite da amostra	Conforme limite da amostra
14	Granulação	1,3,6	Conforme limite da amostra	Conforme limite da amostra
_15	Riscos superficiais	6.10	Conforme limite da amostra	Conforme limite da amostra
16	Pontos de contato	1,2,6,7	Conforme limite da amostra	Conforme limite da amostra
	(causado pelo processo)			

17	Piggos trages (longitudinal)	6,10	$L \le 4$ mm, $B \le 0.5$ mm máx. 2	L ≤ 10 mm, B ≤ 0,7 mm máx.
17	Riscos, traços (longitudinal)	0,10	riscos dentro de um espaço de	$L \le 10$ mm, $B \le 0,7$ mm max. 4 riscos dentro de um espaço
			300 mm	de 200 mm
17	Riscos, traços (transversal)	6,10	Não permitido	Não permitido
18	Escorrimento de tinta, listras	2,3	Não permitido	Permitido
19	Lentes - Tipo marcas de tinta	2,3	Conforme limite da amostra	Conforme limite da amostra
20	Áreas de camada fina	2,3,6	Não permitido	Conforme limite da amostra
21	Fissuras	1.6	Conforme limite da amostra	Conforme limite da amostra
22	Micro porosidade	2,3,6	Permitido o acúmulo de ≤ 5 micro	Permitido
44	Micro porosidade	2,3,0	porosidades em 4 cm ²	remindo
23	Manchas de níquel	6	Conforme limite da amostra	Conforme limite da amostra
24	Casca de laranja	2.3.6	Permitida de estrutura fina.	Permitida estrutura
27	Cusca de laranja	2,0,0	conforme limite da amostra para	grossa, conforme limite da
			aparência e porcentagem da área	amostra para aparência
			superficial total.	e porcentagem da área
			superficial total.	superficial total.
25	Linhas de óxido	11	Não permitido, se visível a uma	Não permitido, se visível a
	Zamius us sinus		distância de 800 mm ou maior	uma distância de 1200 mm
			distancia de 600 iniii od indioi	ou major.
26	Bolhinhas/inclusões	1.7	Vide Seção 10.2	Vide Seção 10.2
27	Problemas de pigmentação	2,3	Conforme limite da amostra	Conforme limite da amostra
28	Defeitos diversos de polimento	6,9	Não permitido, se visível a uma	Não permitido, se visível a
		.,.	distância de 800 mm ou maior	uma distância de 1200 mm
				ou maior.
29	Marcas de polimento em forma d	e 6.9.11	$D \le 0.3 \text{ mm}, B \le 2.5 \text{ mm}, L \le 5$	D ≤ 0,5 mm, B máx. 3,0 mm, L
	peixe ou rabo de cometa		mm máx. 2 marcas dentro de um	≤8 mm máx. 4 marcas dentro
			espaço de 400 mm	de um espaço de 300 mm
30	Linhas de polimento	6,9	$L \le 60$ mm, $B \le 0.5$ mm, $L \le 5$ mm	$L \le 80 \text{ mm}, B \le 3.0 \text{ mm}, L \le 8$
			máx. 6 marcas dentro de um	mm máx. 4 marcas dentro de
			espaço de 300 mm	um espaço de 200 mm
31	Poros	2,3,6	Vide seção 10.2	Vide seção 10.2
32	Indicação de linhas	4,8	Conforme limite da amostra	Conforme limite da amostra
	de solda ou costura			
33	Marcas de decapagem	6,10	Não permitido	Conforme limite da amostra
34	Marcas de degrau	4,6,8	Não permitido se visível a uma	Não permitido se visível a uma
			distância de 800 mm ou maior	distância de 1200 mm ou maior
35	Estrias, riscos	8,11	Conforme limite da amostra	Conforme limite da amostra
36	Granulação	6	Conforme limite da amostra	Conforme limite da amostra
37	Ondulações	6,8,9,11	Não permitido sob as seguintes	Não aceitável se visível em
			condições:	uma distância excedente de 4
			Peça em posição de montagem	m, se acessada como
			Fonte de luz artificial acima de 1,2	Zona A.
			m da peça sendo inspecionada.	
			Inspetor a 2,5 ± 0,5 m da peça a	
			ser inspecionada.	
			Visualizado em ângulo de 20 a	
			45° ao eixo longitudinal do veículo	
			com observação estática.	
			Conforme limite da amostra	
38	Queimas e névoas	3,6,7,9	Conforme limite da amostra	Conforme limite da amostra
39	Variações na espessura	6,12		Conforme limite da amostra
	de camada		Conforme limite da amostra	
40	Deformação local	6,12	Conforme limite da amostra	Conforme limite da amostra
41	Linhas de fluxo de moldagem	6	Conforme limite da amostra	Conforme limite da amostra
42	Marcas de sucção	6,12	Conforme limite da amostra	Conforme limite da amostra
43	Linha de conexão	12	Conforme limite da amostra	Conforme limite da amostra
44	Inclusão de umidade	12	Comorme minic da dinosita	Conforme limite da amostra

Manual Técnico 238

(*) Fonte:

- 1 Anodização/Oxidação
- 2 Pintura à pó (EPS)
- 3 Pintura líquida
- 4 Extrusão
- 5 Fundição por injeção
- 6 Galvanização
- 7 Processos à plasma (Evaporação térmica, Sputtering, CVD, PVD)
- 8 Conformação
- 9 Polimento
- 10 Montagem/Embalagem/Manuseio
- 11 Falta de material
- 12 Processamento de plásticos

10.2 - Tabela de amostras das características quantificáveis - Vide tabela 10.1

10.2.1 - Classificação por tamanho e frequência permitida

Máximo permitido do número total de pontos por superfície examinada.

Tamanho	Faixa	Freqüência na Zona A	Freqüência na Zona B
Grande	> 0,5 - 0,8 mm	1	2
Médio	0,3 - ≤ 0,5 mm	2	4
Pequeno	< 0,3 mm	4	Sem restrição

10.2.2 - Classificação pelo mínimo espaço entre defeitos

Defeitos, os quais não se prolongam além de 0,4 mm em qualquer direção, não são considerados. Acúmulos (mais do que 2 por 25 cm²), não são permitidos.

Na Zona A, 2 defeitos não prolongados em qualquer direção acima de 0,5 mm são permitidos por peça, desde que seu espaçamento seja > que 200 mm.

 $\rm Na~Zona~B$, 2 defeitos não prolongados em qualquer direção acima de 0,7 mm são permitidos por peça, desde que seu espaçamento seja > que $\rm 100~mm$.

Para pequenas peças de tamanho adequado dentro de um círculo fechado de 200 mm de circunferência, aplicam-se as seguintes restrições:

Zong A:

- \bullet Máximo de 2 defeitos não prolongados em qualquer direção > 0,5 mm sobre superfícies de até 25 mm².
- \bullet Máximo de 3 defeitos não prolongados em qualquer direção > 0,5 mm sobre superfícies acima de 25 mm².

Zong B:

- \bullet Máximo de 2 defeitos não prolongados em qualquer direção > 0,7 mm sobre superfícies de até 25 mm².
- \bullet Máximo de 3 defeitos não prolongados em qualquer direção > 0,7 mm sobre superfícies acima de 25 $\text{mm}^2.$

10.3 - Bibliografia

Entre outros documentos, as seguintes literaturas relevantes de pesquisa foram levadas em consideração na preparação desta especificação:

(As informações contém referências em literaturas adicionais)

- Heinz Schmidke: The Ergonomics Manual (chapter dealing with workloads and stresses) Section 3.5. "Problems with Wakefulness"
- Prof. Dr. med. E. Grandjean: "Physiological Layout of the Work-Place, chapter 9.3: "Long-Term Attentiveness"
- Dr. Phil. Martin Schütte: Visual Quality Checking & Mental Stresses
- DIN EN ISO 8785: Surface Imperfections
- KU-Marketing, Europe/VAT, Bayer AG, Leverkusen, Germany: Injection moulding - Defects, Causes and Remedies
- IWK RWTH Aachen: "Characteristics of Aluminum Extrusion Profiles", inhouse publication 2001

Glossário

Alguns termos usados na galvanoplastia

Abrilhantador Primário

Estes abrilhantadores não somente formam a base do depósito brilhante, como também ajudam a manter a ductilidade do depósito e aumentam a densidade máxima da corrente que pode ser usada. (Exemplos: SurTec 857 B-nivelador, SurTec 858 básico e SurTec 858 Fast básico).

Abrilhantador Secundário

Este tipo de abrilhantador em conjunto com os abrilhantadores primários formam o brilho alto do depósito. Não podem ser usados sem que o banho tenha o devido teor de abrilhantador primário. (Exemplos: SurTec 857 B abrilhantador SurTec 858 abrilhantador e SurTec 858 Fast Parte 3)

Aderência

É a força de atração existente entre o metal depositado química ou eletroquimicamente e o metal base, que pode ser medida como sendo a força necessária para separá-los.

Ampère hora (Ah)

Produto entre amperagem e o tempo (horas) de eletrólise (Exemplo: 1 Ah = 1 Ampère durante 1 hora).

Ampère por dm2 (A/dm²)

Ampères calculados por dm² da superfície da peça.

Anodo

Eletrodo (positivo) de um circuito para onde se dirigem os íons negativos. O anodo, durante a eletrodeposição, fornece metal para o catodo.

Arborescências

Depósitos irregulares e ramificados formados durante a eletrodeposição principalmente nas pontas e outras áreas de alta densidade de corrente, que apresentam a forma de árvore.

Arraste

Solução que adere às peças que saem de um banho e são levadas, ou carregadas ao banho subseqüente.

Aspereza

Co-deposição de partículas condutoras ou não condutoras estranhas ao banho, percebidas ao olho nu e ao tato.

Ativação

Eliminação do filme passivo na superfície de uma peça por meio de um tratamento químico, geralmente em solução diluída de ácidos.

Auxiliar de filtração

Material inerte e insolúvel, na forma de pó, utilizado para auxiliar o processo de filtração e evitar a compactação dos resíduos retidos no filtro (Filter Aid).

Banho Toque, Strike ou Flash

Formação de uma camada fina de metal, em geral com uma espessura de aproximadamente 3 micrometros. Exemplo: Cobre-strike, cobre-toque, níquel-strike.

Bolha

Descascamento em certos pontos da camada depositada, sem interrupção desta , em forma de bolha.

Camada de conversão

Camadas de conversão no campo de tratamento de superfícies metálicas são denominadas camadas protetoras ou intermediárias nas quais se formam pela reação química entre o metal (ferro, zinco, alumínio, etc.) e uma solução química. Isto ocorre com ou sem auxilio de energia elétrica, observando-se apenas as características determinadas de temperatura, concentração e outras para a reação.

Carepa (casca de laminação)

Camada espessa de óxidos sobre metais proveniente de tratamento térmico, processos de soldagem e outros

tratamentos mecânicos

Carvão Ativo

Carvão vegetal de granulação variada, alta pureza e grande poder de absorção. Usado para remoção de contaminações orgânicas dos banhos eletrolíticos.

Casca de Laranja (Orangepeeling)

Interrupção da camada de níquel, formando crateras com descascamento na circunferência da cratera. Pode ser causado pelo alto teor de ferro no banho de níquel.

Catodo

Eletrodo (negativo), de onde partem elétrons e para onde se dirigem os íons positivos em um circuito. No catodo, durante a eletrodeposição, ocorre a deposição do material.

Chapa seletiva

Catodo, usualmente sanfonado, usado nos banhos para remoção eletrolítica de contaminantes metálicos.

Chuvisco

Pontinhos finos espalhados na superfície. Pode ser uma finíssima aspereza, como também furos finíssimos e superficiais. Defeito que pode aparecer em banhos de níquel brilhante e cobre ácido brilhante.

Cianeto Livre

Concentração de cianeto de sódio ou potássio no banho de cobre ou latão que não se combinou com o cianeto de cobre e/ou zinco para formar o complexo solúvel deste.

Complexante

Substância que se une com jons metálicos para formar jons complexos.

Condutância (unidade)

Propriedade de um sistema que lhe permite conduzir eletricidade. O siemens (S) é a condutância elétrica de um condutor no qual uma corrente de um ampère é produzida por uma diferença de potencial de um volt (unidade antiga é ohm. de símbolo Ω).

Corrente alternada

Corrente elétrica cuja intensidade e sentido variam periodicamente com o tempo. No Brasil a frequência da rede elétrica é de 60 ciclos por segundo (60 Hz).

Corrente continua

Corrente elétrica que flui em uma só direção.

Decapagem

Remoção de óxidos ou outros compostos de um superfície metálica, por reações químicas ou eletroquímicas. No caso solução alcalina, deve ser chamada "Decapagem alcalina" e solução ácida, deve ser chamada "Decapagem ácida".

Decapante

Solução, normalmente ácida, usada para remover óxido da superfície de metais.

Desengraxante catódico

Um desengraxante eletrolítico em que a peça a ser desengraxada é cátodo (polo negativo).

Desengraxante anódico

Um desengraxante eletrolítico em que a peça a ser desengraxada é anodo (polo positivo) . Também chamado Corrente Beversa (Beverse Current)

Densidade de corrente

Quantidade de corrente elétrica que flui por unidade de área, normalmenteexpressa em A/dm² ou kA/m².

Densidade de corrente catódica (Dc)

Densidade de corrente em A/dm² aplicada no cátodo.

Densidade de corrente anódica (Da)

Densidade de corrente em A/dm² aplicada no anodo.

Deposição autocatalítica

Deposição de um metal por redução química, catalisada pelo próprio substrato metálico.

Deposição por contato

Deposição de um metal pela imersão de um substrato em solução contendo íons de outro metal mais nobre, na

____Manual Técnico

presença de um terceiro metal, denominado material de contato, que irá fornecer elétrons e entrar em solução.

Deposição química (sem corrente)

Deposição de uma camada metálica por meio de uma redução química controlada, cuja reação é catalisada pelo metal ou pela liga sob a qual a camada metálica é formada.

Depósito queimado

Camada áspera e não aderente originada por densidade de corrente excessiva durante a eletrodeposição.

Desplacante

Composto utilizado para remover um depósito metálico ou orgânico do substrato ou de uma camada subjacente.

Despolarização

Diminuição ou eliminação da polarização de um eletrodo.

Diluição

Diminuição da concentração original ou indicação de concentração. Por exemplo: Diluir 1:2 quer dizer baixar a concentração até 33% da original.

Dúctil (ductilidade)

Propriedades dos metais de se deformarem sob tensão, conservando a deformação após a remoção da tensão aplicada.

Eficiência Catódica

É a razão entre o massa do metal realmente depositada e o massa do metal que teria sido depositado se toda a corrente aplicada houvesse sido utilizada para a deposição do metal.

Se considerarmos que um processo de níquel brilhante deposita níquel com uma eficiência catódica de 95%, isto quer dizer que 95% da corrente é utilizada na deposição do níquel, e 5% utilizada na liberação de hidrogênio e em outras reações de redução.

Eficiência Anódica

Neste caso, as perdas decorrem do desprendimento de oxigênio e das reações de oxidação que se processam no anodo.

				_			-			
Tabe	א זאוב	lo oti	ciôna	nice.	catá	dica	40	a ann	ne ni	ocessos.

Processo	Eficiência .
Níquel brilhante	95 α 100%
Cobre ácido	95 α 100%
Cobre alcalino cianídrico	40 α 75%
Cobre alcalino cianídrico alta eficiência	85 α 95%
Zinco alcalino cianídrico	75 α 90 %
Zinco alcalino sem cianetos	80 α 95%
Zinco ácido	95 α100%
Cromo brilhante	8 α 18%
Cromo duro	12 α 28%

Eletrodo

Um condutor metálico pelo qual a corrente elétrica entra ou sai de uma célula eletrolítica. O eletrodo positivo é chamado de anodo e o negativo é chamado de catodo.

Eletroforese

Migração de partículas de uma solução coloidal produzida pela aplicação de uma diferença de potencial entre eletrodos

Emulsão

Mistura heterogênea de duas fases normalmente imisciveis, formada por gotas microscópicas suspensas de um líquido em outro líquido, normalmente óleo em água.

Equivalente eletroquímico

A massa de um elemento, composto, radical ou íons liberado (ou transformado) em uma reação eletroquimica durante a passagem de uma unidade ou corrente como faraday, ampère.hora ou coulomb, ou a massa, em gramas, de um íons que numa eletrólise é transformada pela passagem de um coulomb de carqa elétrica.

Estequiometria

Relação quantitativa dos constituintes de uma espécie química e entre duas ou mais espécies, presentes numa transformação química.

Filter-Aid (Auxiliar filtrante)

Material inerte, insolúvel, de granulação diversa, usado na filtração de banhos eletrolíticos, para evitar passagem de partículas finas pelos filtros e para evitar entupimento rápido dos mesmos.

Flash

Deposição fina de material normalmente abaixo de 2,5 micrometros, como acabamento final.

Fragilização por hidrogênio

Fenômeno que ocorre em peças de ferro, especialmente em aço de alto teor de carbono.

É causado pela absorção de hidrogênio pela camada superficial do aço, tornando-o duro e quebradiço.

Este fenômeno é observado em geral depois da zincagem, cadmiação, desengraxamento catódico, decapagem e cromação dura. O defeito pode ser eliminado através de tratamento térmico em estufa a 200 °C por no mínimo

gramas por ampère hora (g/Ah)

Corresponde a massa de metal (a) eletrodepositado em 1 Ah. isto é durante uma hora, utilizando-se 1 ampère. Eficiência de 100%.

Grease-Pitting

Um "pitting" finíssimo, com os poros concentrados em certas áreas. Causado em geral por restos de graxas e gorduras na superfície da peça. Em banhos agitados por ar, pode aparecer em forma de crateras, em virtude da existência de óleo nas tubulações de ar.

Grau Baumé (Bé)

Indica o peso específico de uma solução, porém, em grau de uma escala Bé. Pode ser determinado com densí-

A medição é feita por meio de dois tipos diferentes de densímetro:

- a) Para líquidos mais pesados que a água.
- b) Para líquidos menos pesados que a água.

Hidrogenização

Vide Fragilização por hidrogênio.

Inibidor de decapagem

Substância utilizada para controlar a velocidade de reações químicas ou eletroquímicas em soluções de decapagens ácidas.

Ladrão de corrente

Catodo auxiliar utilizado para delimitar corrente elétrica em partes de uma peça onde poderia haver queimas ou excesso de densidade de corrente.

Maleável (maleabilidade)

Propriedade dos metais de se deformarem sob compressão, conservando a deformação após remoção da compressão aplicada.

Metal nobre

Metal que não se dissolve, reage ou fornece íons facilmente.

Micrometro (0.001 mm)

Corresponde à milésima parte de um milímetro. Unidade geralmente utilizada para designar espessuras de camadas de metais depositados química e eletroliticamente.

Mil (0,001")

Corresponde à milésima parte de uma polegada. Unidade grandemente utilizada nos E.U.A para designar espessuras de camadas depositadas. Um mil. é equivalente à 25.4 micrometros.

Molhador

244

Substância que reduz a tensão superficial de um líquido, facilitando o escoamento da gaseificação durante a eletrólise, prevenindo os pites provenientes da formação de gás na camada. Melhora também a qualidade da lavagem devido a uma melhor molhabilidade da superfície das pecas.

Manual Técnico

Nano

Nano (símbolo n) é um prefixo no SI de unidades denotando um fator de 10°, ou 1/1 000 000 000. Ele é comumente utilizado na notação de tempo e comprimento na eletrônica e nos sistemas de computadores, como 30 nanosegundos (símbolo ns) e 100 nanometros (nm). Ele foi confirmado em 1960 e vem do grego VÁVOC, significando anão.

Newton

Unidade de medida de força, do Sistema Internacional de Unidades. Requerida para propiciar uma aceleração de l m/s² em Kg de massa na direcão da forca.

Nivelamento

 $\acute{ extbf{E}}$ a característica que certos processos eletrolíticos possuem, de tornar uma superfície metálica mais lisa e uniforme

Esta capacidade é de importância essencial, para melhoria do aspecto visual e aumento da resistência à corrosão

Processos de cobre ácido brilhante e níquel brilhante, com grande poder de nivelamento, são responsáveis por reducão do custo e melhoria na qualidade do produto final.

Ondulação

Modulação na saida de um retificador ocasionada por harmônicas da corrente alternada de alimentação (Ripple).

Oxidante

Substância química que sofre redução. Ao ganhar elétrons promove a perda de elétrons de outra substância, agindo como oxidante.

Passivação

Condição de superfície de um metal a qual retarda a sua reação normal num ambiente específico é presumindo um potencial mais nobre do que o seu potencial normal.

Passivação de zinco

Formação de uma camada protetora, em geral de cromatos, que tornam a superfície mais resistente à corrosão e impressões digitais.

Também chamada: Abrilhantador externo (camadas azuis), Passivação técnica, cromatização (camadas coloridas).

Penetração

Capacidade de uma solução para depositar metal em superfícies de recessos e furos profundos.

pН

Medida de acidez ou alcalinidade de soluções. Valores abaixo de 7 têm carater ácido e acima de 7 têm caráter alcalino (logaritmo negativo de atividade de íons do hidrogênio numa solução).

Pinta

Pequenos pontos e exudações em uma superfície eletrodepositada, normalmente oriundos de porosidade no substrato

Pite

Pequena cavidade originada na superfície depositade durante o processo de deposição ou em virtude de corrosão localizada.

Pitting

Formação de poros em forma de uma parte de uma esfera, muitas vezes com riscos saindo da periferia do poro. Causado por bolhas de hidrogênio que aderem à superfície da peça. Em geral pode ser eliminado pela adição de molhador à solução.

Polarização

Quando o potencial de um anodo se torna mais nobre (menos ativo) e o catodo mais ativo, ocorrendo então uma inversão de potenciais, isso é frequêntemente acompanhado pela formação de um filme na superficie do eletrodo.

ppm (parte por milhão)

Corresponde a 1 mg/kg ou lmg/L quando a densidade for igual a 1.

Purificação Eletrolítica

Aplicada para remover contaminações metálicas de uma solução por meio de eletrólise com baixa densidade de

corrente

Metais como cobre e zinco num banho de níquel depositam em áreas de baixa densidade de corrente com maior velocidade do que o níquel.

Quelante

Substância que integra um metal em sua estrutura e é de dificil ionização. Tambem chamado de agente complexante ou seqüêstrante (doa eletrons durante a reação).

Redutor

Substância que produz redução, sendo por sua vez oxidada (doa eletrons durante a reação).

Redutor de cromo

Composto químico que reduz o cromo hexavalente para o estado trivalente. Em banhos eletrolíticos o cromo trivalente em geral não é prejudicial.

Termo, também usado para um banho, depois do banho de cromo, onde o arraste do banho de cromo (ácido crômico) é reduzido para o cromo trivalente para facilitar a lavagem das peças e da gancheira e evitar contaminação com cromo de outros banhos quando a gancheira novamente entrar no ciclo.

Solubilidade

Quantidade de um sal que se dissolve numa certa temperatura, em 100 mL ou 1 litro de água ou outro meio, até o ponto de saturação. Por exemplo: solubilidade de ácido bórico no banho de níquel brilhante é aproximadamente 50~a/L à $60~^{\circ}C$.

Strike

Vide Flash

Substrato

Metal-base ou superfície significativa onde a camada desejável é aplicada.

Surfactante

Substâncias que alteram significativamente as tensões interfaciais e superficiais de soluções.

Tampão

Substância utilizada em soluções aquosas para manter constante o pH (Buffer).

Tensão superficial

A característica que existe em todos os filmes de superfície de líquidos, a qual, por força molecular, impede o livre molhamento do líquido sobre a superfície.

Para baixar a tensão superficial de um líquido usamos os umectantes.

Toque

Fina camada depositada, normalmente com alta densidade de corrente, seguida de outros depósitos (strike).

Umectante

Vide Molhador

Volt

Unidade de medida de diferença de potencial elétrico, igual a diferença de potencial existente entre dois pontos de um condutor que, conduzindo uma corrente elétrica de um ampère, dissipa a potência de 1 watt entre esses dois pontos.

Bibliografia

Centralsuper - Método de análises de efluentes e tabelas diversas.

DiBari, Dr. George A., "Eletrodeposição de Níquel"- tradução da Revista P & S Finishing de agosto de 2003.

McGean-Rohco, Inc., Método e imagem da célula de Jiggle.

Ministério dos Transportes, Resolução nº 420, de 12 de fevereiro de 2004; PP7 - Manual de Autoproteção de Produtos Perigosos, Manuseio e Transporte Rodoviário e Decreto Nº 96.044, de 18 DE MAIO DE 1998 - PP7 - Regulamento para o Transporte Rodoviário de Produto Perigoso, elaborados pela Agência Nacional de Transportes Terrestres.

Morita, Tokio e Assumpção, Rosely Maria Viegas, "Manual de Soluções, Reagentes e Solventes" Padronização - Preparação - Purificação = Editora Edgard Blücher Ltda. - 2ª edicão - 1972 - São Paulo - Brasil.

NR 26 - Sinalização de Segurança, elaborado pelo Departamento de Segurança e Saúde do Trabalhador, órgão da Secretaria Nacional do Trabalho do Ministério do Trabalho e da Previdência Social.

Peuser, Michael - "Tabelas para Facilitar o Cálculo de Superfícies", páginas 20, 22, 24 e 25 da Revista Tratamentos de Superfícies-Edição Nov./Dez de 1997 da ABTS-Associação Brasileira de Tratamentos de Superfícies.

Rozenberg, Izrael M., "O Sistema Internacional de Unidades"-Instituto Mauá de Tecnologia, São Paulo-1998

Revista Tratamento de Superfície, "Superfície e Volume dos Sólidos", páginas 44 e 45 da Edição de Fev/Mar de 1993. "Conversões fáceis e aproximadas das unidades de espessura de camadas e de revestimentos", pág. 39 da edição de Jul/Ago de 1994.

Sillos, Roberto M., "Instalação da Agitação a Ar", págs 8 e 9 da Revista Tratamento de Superfície - Edição de Jul/Ago de 1999 da ABTS- Associação Brasileira de Tratamentos de Superfícies.

Spinelli, Domingos J.C. - Fórmulas de cálculo e tabelas diversas do Roshaw Book Süffert, Hugo R. - Fórmulas de cálculo e tabelas diversas no livro "Tratamentos de Metais"- Dados Técnicos e Projeto.

Tabela de alguns potenciais de eletrodo - Apostila do curso de galvanoplastia da ABTS (Associação Brasileira de Tratamentos de Superfícies).

Zugman, Jacob - Tabela de Cálculo para Economia de Águas nas Lavagens, pág. 48 da Revista Tratamento de Superfície - Edição de Set/Out de 1997 da ABTS - Associação Brasileira de Tratamentos de Superfícies.

Índice alfabético

A SurTec no Brasil	17
Bibliografia	
Cálculo de aquecimento de banhos eletrolíticos	54
Cálculo de superfície de fixadores	37
Cálculo de superfície e volume dos sólidos	
Cianeto de sódio necessário para dissolver sais metálicos	44
Ciclo PDCA	
Coleta e preservação de amostras de água para análise laboratorial	
Concentração de matéria-prima	
Conteúdo metálico de sais utilizados na eletrodeposição	
Conversão de espessura da camada de micrometros (µm) para g/m2	50
Conversão de medidas de polegadas em milímetros	52
Conversão de unidades de medida	28
Conversões fáceis e aproximadas das unidades de espessura	
de camadas e revestimentos	
Dados e cálculos para eletrodeposição, baseado na eficiência catódica de 100%	20
Decreto 96044/98 - PP7 - Regulamento para transporte rodoviário de produto perigoso	
Definições de unidades SI	31
Eficiência catódica em % de diversos processos	45
Equivalencia de unidades de dureza	
Equivalência de unidades de medida	
Escala de conversão de temperatura Celsius (°C) em Fahrenheit (°F)	53
Escala de durezas	
Fluxo para tratamento de efluentes de linhas de fosfatização	
Fórmula para refrigeração de emergência	
Fórmulas para cálculo de potência necessária numa estufa	
Fórmulas para cálculo do volume interno do tambor: VT (sextavado)	
Fórmulas para Cálculos: Densidade de corrente	
Fórmulas para Cálculos: Espessura de camada	
Fórmulas para Cálculos: Peso do depósito	
Fórmulas para Cálculos: Rendimento de corrente	
Fórmulas para determinação da espessura dos barramentos	
Fórmulas para determinação da largura de um tanque eletrolítico	
Fórmulas para determinação do comprimento do tanque eletrolítico	
Fórmulas para determinação do tamanho de um tambor rotativo	
Fórmulas para dimensionamento da capacidade do retificador	
Fórmulas para dimensionamento da condição que deve ser atendida num tambor	
Fórmulas para dimensionamento da intensidade de corrente necessária num tambor	
Fórmulas para dimensionamento de serpentinas de refrigeração	
Fórmulas para dimensionamento do número de gancheiras e distribuição das peças	22

Fórmulas para dimensionamento do volume ocupado pelas peças em um tambor	24
Fórmulas para dimensionamento dos tanques de simples imersão	22
Fórmulas para dimensionamento simplificada que só têm valor	
para banhos com 2 ou mais cascatas	25
Fórmulas para dimensionamentos adicionais para banhos de lavagem	24
Glossário: alguns termos usados na galvanoplastia	
Guia de problemas: causas e soluções - Banhos de cobre ácido • SurTec 686 B	121
Guia de problemas: causas e soluções - Banhos de cobre cianídrico	
Cobrelux, SurTec 866-B	120
Guia de problemas: causas e soluções - Banhos de cromo	
• SurTec 872, SurTec 874, SurTec 875	134
Guia de problemas: causas e soluções - Banhos de níquel brilhante	
• SurTec 855 Br, SurTec 856, SurTec 858, SurTec 858 Fast	122
Guia de problemas: causas e soluções - Banhos de zinco ácido base KCI	
• SurTec 752 B, SurTec 757 B, SurTec 758 B	142
Guia de problemas: causas e soluções - Banhos de zinco alcalino • SurTec 704	139
Guia de problemas: causas e soluções - Banhos de zinco alcalino com sianeto	
• SurTec 722 B, SurTec 724 B, SurTec 725 B	144
Instrução técnica: Ajuste de pH de solução cromatizante azul trivalente	
Instrução técnica: cálculo estequiométrico para correção de sulfatos	
em efluentes galvânicos	87
Instrução técnica: Controle de aspecto em cromatizante azul trivalente	
Instrução técnica: Determinação da dureza da água	88
Instrução técnica: determinação de sulfatos	
Instrução técnica: Instalação da agitação a ar	
Instrução técnica: Instruções para uso da Célula de Hull	
Instrução técnica: Instruções para uso da Célula de Joggle Rohco	
Instrução técnica: Presença de Cromo VI em filme de cromato	
Instrução técnica: Teste high-low - Verificação da passivação em banho de níquel	
Instrução Técnica: testes qualitativos em efluentes industriais	
Instruções VDA	
Lay-outs de aspersão	
Métodos de análises de banhos galvânicos	
MPT - Processos de pré-tratamentos	
Perfil da Empresa	
Peso para arames	
Política da Qualidade	
Problemas e soluções para linha de fostato	211
Reagentes e indicadores	183
Resolução 420/2004 - ANTT	
Segurança: NR 26 - Sinalização de segurança (126-000-6)	
Segurança: produtos químicos incompatíveis para fins de armazenagem	215
Sequência para aplicação de fosfato de manganês por imersão	208
Seqüência para aplicação de fosfato de zinco por aspersão para pintura a pó ou KTL	
Seqüência para aplicação de fosfato de zinco por imersão	
a frio para pintura a pó ou KTL	207
Seqüência para aplicação de fosfato de zinco por imersão	
para estampagem profunda (extrusão)	206
Seqüência para aplicação de fostato de ferro por aspersão para pintura	

Seqüência para aplicação de fostato de ferro por imersão para pintura	205
Seqüência para aplicação de fostato de zinco por imersão para deformação a frio	
(trefila de tubos)	206
Seqüência para Fosfocromatização de alumínio	
Sequência para passivação Trivalente do Alumínio SurTec 650 ChromitAL TCP	
Seqüências para aplicação de cromo decorativo sobre ABS	149
Seqüências para aplicação de cromo decorativo sobre alumínio	150
Seqüências para aplicação de cromo decorativo sobre ferro	146
Seqüências para aplicação de cromo decorativo sobre ferro, latão e cobre	147
Seqüências para aplicação de cromo decorativo sobre zamac e latão	148
Seqüências para aplicação de cromo duro sobre aço	
Seqüências para aplicação de estanho sobre ferro e latão	157
Seqüências para aplicação de liga zinco-ferro com passivações trivalentes	154
Seqüências para aplicação de liga zinco-níquel com passivações trivalentes	155
Seqüências para aplicação de zinco em processo alcalino isento de cianetos	
com passivações trivalentes	152
Sistemas de oxidação de Fe2+ para Fe3+ em fosfatizantes acelerados por Fe2+	204
Solubilidade dos metais em água	82
Soluções Padrão	
SurTec - Missão Empresarial	11
SurTec Internacional	
Tabela de amperagem para barramentos quadrados e retangulares	
Tabela de amperagem para barramentos redondos	
Tabela de aplicações e observações sobre depósitos eletrolíticos	
Tabela de área e peso de parafusos	
Tabela de cálculo para economia de água nos tanques de lavagem	
Tabela de calorias necessárias para evaporação de água	69
Tabela de coeficientes de dilatação térmica de alguns metais em camadas finas	
e de alguns substratos (em 106/°C)	
Tabela de concentração máxima em banhos de lavagem	
Tabela de Conversão (peso específico / graus Baumé)	
Tabela de conversão de °Bé/g/l de ácido crômico	
Tabela de dimensões de tambores rotativos	
Tabela de dureza de metais eletrodepositados (em HV)	
Tabela de ferros redondos e quadrados	
Tabela de máxima corrente para banhos	66
Tabela de peso superficial (g/m²), espessura média (micrometros) e densidade	
aparente de camadas de fosfato de zinco	67
Tabela de qualidade mínima de pureza de água (em microsiemens/cm)	
para diversos banhos	
Tabela de resistência química de materiais	
Tabela de retenção em micrometros do material de filtração	
Tabela de unidades de vácuo	74
Tabela de volume de H2SO4 necessário para reduzir o pH	
a cada 0,2 pontos (em cc/100 litros)	
Tabela de volume mínimo de banho à tambor	
Tabela para cálculo da capacidade de cargas em banho de Zinco Alcalino	55
Tabelas de ligas de alumínio	
Tabelas para o cálculo das superfícies de cargas para eletrodeposição	56

Teoria dos fosfatos	188
Tratamento de efluentes: Limite de emissões Lei Estadual 997/76, Decreto 8468	81
Unidades de medida - unidades "NÃO SI"	34
Unidades de medida - unidades de base - sistema internacional (SI)	33
Unidades de medida - unidades derivadas - sistema internacional (SI)	33
Volocidado do doposição em minutos do diversos processos	46

Sur Jec

· Projeto gráfico, ilustrações, e editoração eletrônica

São Paulo - SP - Brasil Tel. 55 11 5531.0044 Curitiba - PR - Brasil Tel. 55 41 3356.4050 www.ponto-e-letra.com.br business@ponto-e-letra.com.br

• Pré-impressão, impressão e acabamento / Pre-production, printing and finishes
Pancrom • www.pancrom.com.br

Terceira edição Impressa em São Paulo, Brasil, em Abril de 2009 © SurTec do Brasil Ltda. www.surtec.com.br