The Implementation of Tiny Encryption Algorithm (TEA)
on PIC18F4550 microcontroller

Edi Permadi
Electrical Engineering 2005
President University
edipermadi@gmail.com | http://edipermadi.wordpress.com

Abstract. We presented a way to implement Tiny Encryption Algorithm (TEA) using an 8-bit
microcontroller PIC18F4550

Introduction

Tiny Encryption Algorithm is a notable simple, fast and feistel based block cipher developed by
David J. Wheeler and Roger M. Needham from Cambridge University. Tiny Encryption Algorithm has 32
rounds of simple processes which are shifts, additions and XORs. Tiny Encryption Algorithm has 128-bit
key length and 64-bit block size.

TEA cipher key scheduling is simple anyway. It uses modulo 32-bit addition by delta (0)
constant. However, that constant is derived from the golden number as follow:

0=(5-1)-2*

TEA cipher processes data block by block. Each block is consisted of two 32-bit half block. A half
block is processed and swapped iteratively and all operations are performed on modulo 32-bit big
endian manner. The detail of TEA cipher can be described as follow:

ko]
-
|

.
Delta;
ch._ A rh.
N

L7 L

< 4

:

LL]
FI_= == 5
e

1 The Implementation of Tiny Encryption Algorithm (TEA) on PIC18F4550 | Edi Permadi

PIC18F4550 is an 8-bit microcontroller manufactured by Microchip Technology Inc. This
microcontroller employs RISC architecture with native “carry enabled” adding instruction and “borrow
enabled” subtracting instruction. Prior to algorithm implementation, PIC18F4550 has ability to cope
such all requirements required by TEA cipher. Technically speaking, those 32-bit operations are available
under emulation.

Implementation

Firstly, we discussed big-endian byte organization. The big-endian stated that 32-bit data is
packed as 4 8-bit data where the least significant byte is located rightmost, in highest memory location
and vice versa. For example 305419896, will be represented as 0x12345678 where 0x12 located on the
lower address of memory and 0x78 located on the higher address memory. In graphical representation,
0x12345678 is depected as follow.

addr+0 addr + 1 addr + 2 addr+ 3

0x12 0x34 0x56 0x78

Secondly, we emulated 32-bit operations in such simpler 8-bit operations that are primitive and
native to PIC18F4550 microcontroller. The instruction emulation is done by combining 8-bit instruction
to masquerade an expected 32-bit operation. Those emulated operations are shifting, XORing, adding
and subtracting. Each of those operations is explained gradually below:

1. 32-bit Shifting
32-bit shifting is done by chaining four “carry enabled” 8-bit instructions. By
implementing this method, flowing bit is propagated from previous instruction to the current
instruction through carry flag. However, it is necessary to reset carry bit before the first 8-bit
shift to avoid unexpected result. The emulation detail is shown below.
32-bit Shift Left
The real 32-bit operation (left most bit overflow is ignored)

4—{ 32-bit }4—@

Emulated 32-bit operation (left most bit overflow is ignored)

8-bit 4—@
4{ 8-bit Stage 1
8-bit Stage 2

8-bit Stage 3

Stage 4
The 32-bit shift left operation is emulated by a macro below

; 32-bit Shift Left Instruction emulation macro
sh132 MACRO arg

bcf status,c

ricf arg+3,f

ricf arg+2,f

ricf arg+l,f

ricf arg+0,f

ENDM

2 The Implementation of Tiny Encryption Algorithm (TEA) on PIC18F4550 | Edi Permadi

32-bit Shift Right
The real 32-bit operation (right most bit overflow is ignored)

o}

32-bit }—b

Emulated 32-bit operation (right most bit overflow is ignored)

n 8-bit
Stage 1 8-bit

Stage 2 8-bit
Stage 3 8-bit

Stage 4

The 32-bit shift left operation is emulated by a macro below

; 32-bit Shift Right Instruction emulation macro
shr32 MACRO arg

bcf

rrcf
rrcf
rrcf
rrcf
ENDM

2. 32-bit bitwise XOR

status,c
arg+0,Ff
arg+l,Ff
arg+2,f
arg+3,F

32-bit bitwise XOR process is done by XORing two corresponding byte chunks.
Sequential instruction order is optional, since each stage is independent to other and none is
propagated from previous stage to the current stage.

The real 32-bit XOR

32-bit ‘

XOR % 32-bit

+
‘ 32-bit ‘
Emulated 32-bit XOR
‘ 8-bit ‘ 8-bit ‘ 8-bit ‘ 8-bit ‘
A A y
8-bit ‘ 8-bit ‘ 8-bit ‘ 8-bit ‘
, ! .
‘ 8-bit ‘ 8-bit ‘ 8-bit ‘ 8-bit ‘

3 The Implementation of Tiny Encryption Algorithm (TEA) on PIC18F4550 | Edi Permadi

The process above is represented as a MACRO below:
; 32-bit bitwise XOR emulation dst = (dst ~ src)

xor32 MACRO
movf
xorwF
movF
xorwf
movf
xorwf
mov T
xorwf
ENDM

dst, arg
src+0,w
dst+0,f
src+1,w
dst+1,f
src+2,w
dst+2,f
src+3,w
dst+3,f

3. 32-bit Addition / Subtraction

32-bit addition and subtraction has the same principal as 32-bit shifting implementation.
32-bit addition / subtraction is done by chaining 4 8-bit addition / subtraction in order of least
significant byte to the most significant byte. Sequential order is important here since each stage
is not independent to other. Carries and borrows are propagated from previous instruction to
the current instruction, therefore “carry enabled” and “borrow enabled” instructions are

employed here.

The adding and subtracting emulation is done by macros below.

; 32-bit adding emulation dst = (dst + src)

add32 MACRO
movf
addwf
mov T
addwfc
mov T
addwfc
movf
addwfc
ENDM

dst, src
src+3,w
dst+3,f
src+2,w
dst+2,f
src+1,w
dst+1,f
src+0,w
dst+0,f

; 32-bit subtracting emulation dst = (dst - src)

add32 MACRO
mov T
addwf
mov T
addwfc
movf
addwfc
mov T
addwfc
ENDM

dst, src
src+3,w
dst+3,f
sSrc+2,w
dst+2,f
src+1,w
dst+1,f
src+0,w
dst+0,f

Due to performance issues, those macros above may subject to modification but the concept

are still the same.

Thirdly, we discussed the C model of Tiny Encryption Algorithm (TEA) as a reference for
assembly language reference. Both encryption and decryption routine of Tiny Encryption Algorithm has
simple structure and independent from other inner functions. The encryption and decryption routine

then shown below.

4 The Implementation of Tiny Encryption Algorithm (TEA) on PIC18F4550 | Edi Permadi

#include <stdint.h>

// encryption routine
void encrypt (uint32_t* v, uint32_t* k) {
uint32_t vO=v[0], vi=v[1], sum=0, i;
uint32_t delta=0x9e3779b9;
uint32_t kO=k[0], k1=k[1], k2=k[2], k3=k[3];
for (i=0; 1 < 32; i++) {
sum += delta;
vO += ((vl<<4) + kO) ™ (vl + sum) ™ ((v1>>5) + k1);
vl += ((V0<<4) + k2) ™ (vO + sum) ™ ((vO>>5) + k3);

}
v[0]=v0; v[1]=Vv1;
}

// decryption routine

void decrypt (uint32_t* v, uint32 _t* k) {
uint32_t vO=v[0], vil=v[1l], sum=0xC6EF3720, i;
uint32_t delta=0x9e3779b9;
uint32_t kO=k[0], kl1=k[1], k2=k[2], k3=k[3];
for (i=0; i<32; i++) {

vl -= ((v0<<4) + k2) ~ (vO + sum) ™ ((v0O>>5) + k3);
vO -= ((vi<<4) + k0) ™ (vl + sum) ~ ((v1>>5) + k1);
sum -= delta;

}
v[0]=v0; v[1]=v1;

The assembly implementation of the code above is available below:

Implementation of Tiny Encryption Algorithm (TEA) on PIC18F4550
Copyright (C) 2009 Edi Permadi

Author : Edi Permadi

Date Coded : Jan 16, 2008

Version 1.0

Last Modified : Jan 16, 2008

downloaded from > http://edipermadi .wordpress.com
Email : edipermadi@gmail .com

; This program is free software: you can redistribute it and/or modify
; 1t under the terms of the GNU General Public License as published by
; the Free Software Foundation, either version 3 of the License, or

; (at your option) any later version.

This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

5 The Implementation of Tiny Encryption Algorithm (TEA) on PIC18F4550 | Edi Permadi

Description

Tiny Encryption Algorithm (TEA) is a block cipher designed by Roger
Needham and David Wheeler. This block cipher has 128-bit key length and 64-
bit block length. This cipher employes 32 loops feistel structure. Each block
of data is consisted of two 32 bit half block building.

TEA uses native and primitive 32 bit operations suchs shifts, adds, and
bitwise XORs. Those instructions scalable and easy to implement in such lower
computring environment, for instance microcontroller.

Thus, TEA is nothing than an easy and fast block cipher.

Implementation
TEA is consisted of three 32-bit primitive instructions which are:
addition, shift and XOR. Those 32-bit instructions were not directly
applicable to PIC18F4550, thus the implementation is done by emulating native
PIC18F4550 instructions to masquerade those 32-bit instructions. Those 32-bit
instruction then elaborated step by step as follows:
1. 32-Bit Addition / Subtraction
The 32-bit additiona and subtraction is done by implementing
4 chained 8-bit additions iIn a macro. carry Is propagated
through carry flag and implemented natively as add with carry
instruction. The implementation of 32-bit addition and
subtraction can be found inside this code as "add32" and
""sub32" macros.
2. 32-bit Bitwise XOR
The 32-bit bitwise XOR is easily done by implementing parallel 4
8-bit bitwise XOR. This instruction is implemented concurently
with 32 bit addition as "xadd32" and ''xsub32" to avoid unused
cycles.
3. 32-Bit Shift Left / Right
The 32-bit shift is done by implementing sequential shift.
Bits are propagated through carry flag. Those implementations
are entitled "shr32" and "shl132".

History

vi.0 Jan 16, 2009 Initial Release
Benchmark

Encryprion : 6826 cycle

Decryption : 6830 cycle

Test Vector
Plain : 0x0123456789abcdef
Key : 0x00112233445566778899%9aabbccddeeff
Cipher : 0x126c6b92c0653a3e

LIST P=PIC18F4550
RADIX DEC

GPR Definition

kO equ 0x00 ; key buffer

k1 equ 0x04

k2 equ 0x08

k3 equ 0x0c

vO equ 0x10 ; half left side

vl equ 0x14 ; half right side
sum equ 0x18 ; summing buffer

cnt equ Oxlc ; loop counter

t0 equ 0x20 ; temporary register

6 The Implementation of Tiny Encryption Algorithm (TEA) on PIC18F4550 | Edi Permadi

tl equ 0x24

2 equ 0x28
t3 equ 0x2c
SFR Definition
status equ 0x0fd8

; Bit Definition
z equ 0x02
c equ 0x00

Useful Macros

; Load 8 bit value into a register
movlf MACRO reg,lit

moviw Hlit

movwf reg

ENDM

; load integer type constant

mov 1 £32 MACRO reg,lit
moviw (lit >> .0) & Oxff
movwf reg+3
moviw (lit >> .8) & Oxff
movwf reg+2
moviw (lit >> .16) & Oxff
movwf reg+l
moviw (lit >> .24) & Oxff
movwf reg+0
ENDM

; Add two integer

add32 MACRO dst,src
movf src+3,w
addwf dst+3,f
movF src+2,w
addwfc dst+2,f
movf src+l,w
addwfc dst+1,Ff
movF src+0,w
addwfc dst+0,f
ENDM

; Add two integer

sub32 MACRO dst,src
movF src+3,w
subwf dst+3,f
movf src+2,w
subwfb dst+2,f

7 The Implementation of Tiny Encryption Algorithm (TEA) on PIC18F4550 | Edi Permadi

movf src+l,w
subwfb dst+1,F
movf src+0,w
subwfb dst+0,F
ENDM

; Reset integer to zero
clrf32 MACRO arg
clrf arg+0
clrf arg+l
clrf arg+2
clrf arg+3
ENDM

; Rotate Right Integer

rrf32 MACRO arg
bct status,c
rrcf arg+0,f
rrcf arg+l,f
rrcf arg+2,f
rrcf arg+3,f
ENDM

; Rotate Left Integer

rif32 MACRO arg
bct status,c
ricf arg+3,f
ricf arg+2,f
ricf arg+l,f
ricf arg+0,f
ENDM

; Add constant to integer

add132 MACRO arg,lit
moviw (lit >> .0) & Oxff
addwf arg+3,f
moviw (lit >> .8) & Oxff
addwfc arg+2,f
moviw (lit >> _.16) & Oxff
addwfc arg+1,f
moviw (lit >> _.24) & Oxff
addwfc arg+0,f
ENDM

; Subtract constant from integer
subl32 MACRO arg,lit
moviw (lit >> .0) & OxffF
subwf arg+3,f
moviw (lit >> .8) & Oxff
subwfb arg+2,f
moviw (lit >> .16) & Oxff
subwfb arg+1,f
moviw (lit >> .24) & Oxff
subwfb arg+0,f
ENDM

; copy integer

mov32 MACRO dst,src
movff src+0,dst+0
movff src+l,dst+1l
movff src+2,dst+2
movff src+3,dst+3
ENDM

8 The Implementation of Tiny Encryption Algorithm (TEA) on PIC18F4550 | Edi Permadi

; duplicate an integer three times
dup32 MACRO dstO,dstl,dst2,src

movf src +0,w

movwf dst0+0

movwf dstl+0

movwf dst2+0

movf src +1,w

movwf dstO+1

movwf dstl+l

movwf dst2+1

movf src +2,w

movwf dst0+2

movwf dstl+2

movwf dst2+2

movf src +3,w

movwf dst0+3

movwf dstl+3

movwf dst2+3

ENDM

; XOR and adddst += (srcO ™ srcl © src2)
xadd32 MACRO dst,src0,srcl,src2

movf srcO0+3,w

xorwf srcl+3,w

xorwf src2+3,w

addwf dst +3,f

movf srcO+2,w
xorwf srcl+2,w
xorwf src2+2,w
addwfc dst +2,f

movf srcO+1,w
xorwf srcl+l,w
xorwf src2+1,w
addwfc dst +1,f

movf srcO+0,w
xorwf srcl+0,w
xorwf src2+0,w
addwfc dst +0,f
ENDM

; XOR and subdst -= (srcO ™ srcl © src2)
xsub32 MACRO dst,src0,srcl,src2

movf srcO0+3,w

xorwf srcl+3,w

xorwf src2+3,w

subwf dst +3,F

movf srcO+2,w
xorwf srcl+2,w
xorwf src2+2,w
subwfb dst +2,F

movf srcO+1,w
xorwf srcl+l,w
xorwf src2+1,w
subwfb dst +1,f

movf srcO+0,w
xorwf srcl+0,w

9 The Implementation of Tiny Encryption Algorithm (TEA) on PIC18F4550 | Edi Permadi

xorwf src2+0,w
subwfb dst +0,Ff
ENDM

; Main entrance

org 0x00
testv movIf32 v0,0x01234567 ; initialize test vector
mov 1 £32 v1,0x89abcdef
mov 132 k0,0x00112233
mov 132 k1,0x44556677
mov 1 32 k2 ,0x8899aabb
mov 1 £32 k3,0xccddeeff
nop
call encrypt ; encrypt
nop ; add breakpoint here
call decrypt ; decrypt
nop ; put breakpoint here!
goto $; Freeze microcontroller

; Encrypting Routine

encrypt
movlf cnt, .32 ; Prepare for 32 loops
clrf32 sum ; Reset sum
encl addl32 sum,0x9e3779b9 ; add 0x9e3779b9 to summing buffer

; Process vO

dup32 tO,tl,t2,vl ; tO
rif32 t0 ; t0
rif32 t0

rif32 t0

rif32 t0

add32 t0,k0

tl = €2 = vl
(t0 << 4) + kO

add32 tl1,sum ; tl

(tl1 + sum)

rrf32 t2 ; 2
rrf32 t2

rrf32 t2

rrf32 t2

rrf32 t2

add32 t2,k1

(t2 >> 5) + ki1

xadd32 v0,t0,tl1,t2 ; vO

+

= (10 ~ t1 ~ 12)

; Process vl

dup32 tO,tl1,t2,v0 ; tO
rif32 t0 ; t0
rif32 t0

rif32 t0

rif32 t0

add32 t0,k2

tl = t2 = vO
(t0 << 4) + k2

add32 tl1,sum ; tl (tl1 + sum)

10 The Implementation of Tiny Encryption Algorithm (TEA) on PIC18F4550 | Edi Permadi

rrf32
rrf32
rrf32
rrf32
rrf32

t2
t2
t2
t2
t2

add32 t2,k3
xadd32 v1,t0,tl,t2

decfsz cnt,f
bra encl
return

; 2 = (€2 >> 5) + k3

; vl += (t0 N t1 ™ t2)

; Decrypting Routine

aecrypt

decl

movIF
mov 1 £32

; Process vl
dup32 t0,t1,t2,v0
rif32 tO0 ;
rif32 t0

rif32 tO0

rif32 t0

add32 t0,k2

cnt, .32

add32 t1,sum ;
rrf32
rrf32
rrf32
rrf32
rrf32 t2

add32 t2,k3

xsub32 v1,t0,tl,t2 ;

2 B
t2
t2
t2

; Process vO

dup32 tO0,tl1,t2,vl ;
rif32 tO0 ;
rif32 t0

rif32 tO0

rif32 t0

add32 t0,k0

add32
rrf32
rrf32
rrf32
rrf32
rrf32 t2

add32 t2,k1

xsub32 vO,t0,tl,t2 ;

tl,sum
12 N
2
t2
2

subl32 sum,0x9e3779b9
decfsz cnt,f

bra decl

return

END

sum,0xc6ef3720

; t0

t0

tl

t2

vO

t0
t0

; tl

t2

vO

; Prepare for 32 loops
; sum = 0xc6ef3720

tl = t2 = vO
(t0 << 4) + k2

(tl + sum)

(t2 >> 5) + k3

+

= (t0 ~ t1 " t2)

tl = t2 = vl
(t0 << 4) + kO

(tl1 + sum)
(t2 >> 5) + ki1

+= (10 ~ t1 " t2)

; Subtract 0x9e3779b9 from summing buffer

11

The Implementation of Tiny Encryption Algorithm (TEA) on PIC18F4550 | Edi Permadi

Software Usage

To perform encryption, user can simply put cipher key on k0:k3 and plain text at vO:v1 then call
encrypt routine. After encrypting routine has been done, cipher text can be retrieved from vO:v1. In
addition cipher key buffer is unaltered during encryption process, so that decryption can be directly
performed after cipher text located on v0:v1. Decryption process has the same step as encryption, the
difference is that initial data on v0:v1 is cipher Text and resulting data is plain text and the processing
function is decrypting routine.

Performance

Test Vector Result

To verify the implementation, author has tested the assembly implementation to process
following data:

Ciphering Test Vector
Plain Text Cipher key Cipher Text
0x0123456789abcdef | 0x00112233445566778899aabbccddeeff | 0x126c6b92c0653a3e

Deciphering Test Vector
Cipher Text Cipher Key Plain Text
0x126c6b92c0653a3e | 0x00112233445566778899%aabbccddeeff | 0x0123456789abcdef

Below are two screenshot showing data progression during encrypting. One marked red are
cipher key while one marked blue is data that being processed. At the initial value, the one that marked
blue is showing plain text while at the final value showing cipher text.

1. |Initial Value

i
[aadress [o0[o1[0z[03[04|05|06]07|08] 03| 0L]0B|0C| 0D O | OF | ASCIT -

ooo 00 11 22 35 44 55 66 77 55 99 AL BE CC DD EE FF| .."3DUfW
o1io 01 23 45 £7 52 ALE CD EF| O0 OO0 00 00 00 00 00 00 .HEQ.... vvvevon.
0zZ0 o0 00 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00 oo vvene sennnans
030 o0 00 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00 oo vvene sennnans

2. Final Value

i
[aadress [o0[o1[0z[03[04|05|06]07|08] 03| 0L]0B|0C| 0D O | OF | ASCIT -

ooo 00 11 22 33 44 55 66 77 55 99 AL BE CC DD EE FF| .."3DUfW
010 12 6C 6B 92 CO 65 34 3E| CA EF 37 20 00 00 00 00 .lk..e:> ..7
ozo AF 60 63 DE DS 5B AZ Bz CD 71 52 S5E OO0 00 00 00 . e..[.. gR[....

030 o0 00 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00 ... veee cenenans

Speed Test Result

The table below is showing speed test result, assuming that 1 cycle is equal to 1 microsecond.

Parameter | Required Number of Cycle | Speed

Key Setup |0 ~

Encryption | 6826 cycle 585.9 byte/s
Decryption | 6830 cycle 585.6 byte/s

12 The Implementation of Tiny Encryption Algorithm (TEA) on PIC18F4550 | Edi Permadi

Conclusion

Tiny Encryption Algorithm can be implemented in PIC18F4550 with satisfactory result. At 4 MHz
(1 microsecond per cycle) working frequency, the implementation shows 586 byte/s speed.

History
D
Date ocgment Codg Description
Version Version
January 19, 2009 | 1.0 1.0 Initial Release
Reference

Tiny Encryption Algorithm, http://en.wikipedia.org/wiki/Tiny Encryption Algorithm

PIC18F4550 datasheet [DS39632D], http://www.microchip.com

Author

Edi Permadi is an Electrical Engineering student of President University.
He dedicated his effort to develop hardware based cryptographic
device. He is currently doing his final project entitled “PSTN Crypto
Phone”, that provides secure communication over telephone line.

He has been doing self research on optimizing the implementation of
various cryptographic and hash function. He also just started doing self
research that focus on avoiding side channel attack due to
cryptographic device.

He is currently working as a part time employee at an International
Outsourcing Company headquartered at Singapore as an embedded
system developer.

13 The Implementation of Tiny Encryption Algorithm (TEA) on PIC18F4550 | Edi Permadi

